Устройства защиты от перенапряжения в сети

Защита от перенапряжения в сети

Перенапряжения, которые возникают в электросети, сопровождаются, как правило, выходом из строя электрических приборов. Кроме того, перенапряжения, могут привести к таким негативным последствиям как пожар или даже гибель людей. В данной статье рассмотрены устройства, которые применяются для защиты от перенапряжения в сети.

Довольно часто в наших домах и квартирах можно наблюдать то, что напряжение в розетках несколько отличается от положенных 220 В. Зависит это от разных причин и диапазон таких отклонений напряжения может колебаться от 170 – 380 В до нескольких тысяч В.

Не трудно догадаться, что такие перепады напряжения часто становятся причиной выхода из строя бытовой техники. Понятно, что пониженное напряжение может привести к не корректной работе электрооборудования, а повышенное к выходу его из строя, особенно это касается таких устройств как компьютеры, телевизоры, плазменные панели, холодильники и т.п.

Перенапряжением называется такое значение установившегося напряжения, которое превышает значение предельно допустимого напряжения.

Обратите внимание

Государственным стандартом качества электрической энергии установлены нормы отклонения напряжения в точке подключения потребителей электрической энергии. Существует понятие допустимое и предельно допустимое значение напряжения. Эти значения равны соответственно ±5 и ±10 % от номинального значения напряжения и в точках общего присоединения потребителей.

То есть нормальным считается напряжение:

  • – для однофазной сети в диапазоне 198 – 242 В;
  • – для трехфазной сети 342 – 418 В.

Причины возникновения перенапряжения

1) Самой распространенной причиной перенапряжения для бытовых потребителей является обрыв нулевого провода (N).

Нулевой провод при несимметричных нагрузках выравнивает фазные напряжения у потребителя электроэнергии. При обрыве или отгорании нулевого провода ток будет циркулировать между фазами. Часть потребителей получит повышенное напряжение, вплоть до 380 В, а часть заниженное.

2) Неправильное или ошибочное подключение в электрощитовой, когда вместо нулевого провода вы подключаете фазный, при этом в дом приходит не 220 В, а 380 В.

3) Во время грозовых разрядов, удар молнии в линию электропередачи, возникают импульсные перенапряжения которые по величине могут достигать нескольких тыс. В.

4) Регулирования напряжения на подстанциях энергосистем.

Защита от перенапряжения

– применение стабилизаторов напряжения предохраняет вашу сеть от перепадов напряжения, делая эксплуатацию электротехники безопасной. Большинство таких приборов имеют дисплей, на котором отображается напряжение сети, график скачков напряжения и т.п.

Стабилизаторы оснащены функцией контроля напряжения, если значение напряжения сети выходит за диапазон контроля стабилизатора, например ниже 150 В или выше 260 В, то стабилизатор блокируется и отключает от сети потребителя. Как только напряжение сети возобновляется до допустимых значений, стабилизатор снова включается.

реле напряжения защищает и отключает бытовую технику при возникновении недопустимых перепадов напряжения и автоматически включает потребителей после восстановления его допустимых значений.

Реле напряжения широко используется для защиты от перенапряжения бытовых электроприборов. Целесообразно использовать реле напряжения в квартирах так как в таких сетях не редко возникают опасные перенапряжения из за обрыва нулевого провода.

Реле напряжения по своей структуре могут использоваться для защиты как одного конкретного потребителя, так и для защиты всего дома или квартиры.

Важно

При защите одного или группы потребителей, реле напряжения подключается по схеме приемник – реле – розетка, то есть прибор подключается к реле, затем само реле включается в розетку.

Для защиты от перенапряжения всего дома или квартиры, реле напряжения устанавливается на DIN-рейку в распределительном щитке.

– комбинированное использование датчика повышенного напряжения (ДПН) и УЗО такой способ борьбы с перенапряжением получил широкое распространение благодаря незначительной цене.

Принцип работы весьма прост: ДПН контролирует наличие напряжения сети, УЗО отключает сеть при возникновении перенапряжения.

Источник: http://electricvdome.ru/zachita-ot-perenaprjazhenija/zachita-ot-perenaprjazhenija-v-seti.html

Защита от перенапряжения

Защита от перенапряжения

     Несколько лет назад, у моих друзей проживающих в частном секторе, случилось ЧП – где-то в сети перепутали фазы и на  всю подключенную в этот момент к розеткам технику повалило напряжение 380В.

Естественно телевизоры, компьютеры и музыкальные центры не спасал и дежурный режим – импульсные блоки питания летели, как дети в школу.

В общем убытки у людей были колоссальные! В такой ситуации не спасло бы и релейное устройство защиты – спасти приборы можно только с помощью быстродействующих электронных устройств, обесточивающих линию при повышении сетевого напряжения до опасного уровня.

  Естественно после этого случая (лучше поздно, чем никогда), народ потянулся ко мне за помощью в плане защиты от таких ситуаций. Конечно им можно было приобрести и дешёвое китайское устройство защиты от перенапряжения, но люди доверяют мне больше, чем китайцам:)

     Схему устройства защиты аппаратуры от перенапряжения выбрал из радиожурнала.

     Здесь принцип действия такой, что при превышении напряжения выше заданного безопастного уровня, устройство замкнёт сеть и сгорят или выбьют пробки.

Преимущества такой защиты очевидны – сразу блокируется вся проводка, а не только те аппараты, что подключены через устройство защиты, как делается в большинстве промышленных девайсов. Напряжение срабатывания защиты примерно 270 В.

Резистором R1 можно в небольших пределах изменять напряжение срабатывания. Конденсаторы С1 и С2 образуют с R1 RC-цепочку, которая препятствует срабатыванию устройства при импульсных выбросах в сети.

Совет

     Работа устройства зашиты от перенапряжения заключается в следующем: при напряжении в сети до 270 В стабилитроны VD3, VD4 закрыты. Также закрыты и тиристоры.

При превышении действующего значения напряжения свыше 270 В открываются стабилитроны VD3, VD4, и на управляющие электроды тиристоров поступает открывающее напряжение.

В зависимости от полярности полупериода сетевого напряжения, ток проходит либо через тиристор VS1, либо через VS2 которые открываясь – замкнут сеть. Когда ток превышает 10 А, срабатывают автоматические выключатели. 

     Без конденсаторов С1 и С2 время срабатывания не превышает одного полупериода напряжения сети, но возможны ложные срабатывания. Так как с конденсаторами С1 и С2 снижается быстродействие устройства, можно сделать и однополупериодную схему с одним тиристором (VS1), удалив VS2, С2, VD1, VD2 и VD6, что я и сделал для простоты.

     Схема собрана навесным монтажём в пластмассовом корпусе от какого-то сетевого адаптера. Светодиод показывает, что устройство защиты от перенапряжения включенно в сеть.

Включается устройство в любую разетку сети. Аппарат работает несколько лет, собрано их пять штук. Проблем с перенапряжением с тех пор ни у кого не было.

Симисторы используем на большой рабочий ток, другой вариант смотрите здесь.

Вопросы задавайте на ФОРУМЕ    Схемы для начинающих

Источник: http://elwo.ru/publ/zashhita_ot_perenaprjazhenija/1-1-0-349

5. Защита электронных устройств от перенапряжения | Техническая библиотека lib.qrz.ru

Для защиты радиоэлектронного оборудования традиционно применяют плавкие предохранители. Обычно в них используют тонкие неизолированные проводники калиброванного сечения, рассчитанные на заданный ток перегорания. Наиболее надежно эти приспособления работают в цепях переменного тока повышенного напряжения. С понижением рабочего напряжения эффективность их применения снижается.

Обусловлено это тем, что при перегорании тонкой проволоки в цепи переменного тока возникает дуга, распыляющая проводник. Предельным напряжением, при котором может возникнуть такая дуга, считается напряжение 30…35 6. При низковольтном питании происходит просто плавление проводника.

Читайте также:  Характеристики силового кабеля асб

Процесс этот занимает более продолжительное время, что в ряде случаев не спасает современные полупроводниковые приборы от повреждения. Тем не менее, плавкие предохранители и поныне широко используют в низковольтных цепях постоянного тока, там, где от них не требуется повышенное быстродействие.

Обратите внимание

Там, где плавкие предохранители не могут эффективно решить задачу защиты радиоэлектронного оборудования и приборов от токовых перегрузок, их можно с успехом использовать в схемах защиты электронных устройств от перенапряжения.

Принцип действия этой защиты прост: при превышении уровня питающего напряжения срабатывает пороговое устройство, устраивающее короткое замыкание в цепи нагрузки, в результате которого проводник предохранителя плавится и разрывает цепь нагрузки.

Метод защиты аппаратуры от перенапряжения за счет принудительного пережигания предохранителя, конечно, не является идеальным, но получил достаточно широкое распространение благодаря своей простоте и надежности. При использовании этого метода и выбора оптимального варианта защиты стоит учитывать, насколько быстродействующим должен быть автомат защиты, стоит ли пережигать предохранитель при кратковременных бросках напряжения или ввести элемент задержки срабатывания. Желательно также ввести в схему индикацию факта перегорания предохранителя.

Простейшее защитное устройство [4.1], позволяющее спасти защищаемую радиоэлектронную схему, показано на рис. 4.1. При пробое стабилитрона включается тиристор и шунтирует нагрузку, после чего перегорает предохранитель.

Тиристор должен быть рассчитан на значительный, хотя и кратковременный ток.

В схеме совершенно не допустимо использование суррогатных предохранителей, поскольку в противном случае могут одновременно выйти из строя как защищаемая схема, так и источник питания, и само защитное устройство.

Рис. 4.1. Простейшая защита от перенапряжения

Рис. 4.2. Помехозащищенная схема защиты нагрузки от превышения напряжения

Усовершенствованная схема защиты нагрузки от превышения напряжения, дополненная резистором и конденсатором [4.2], показана на рис. 4.2.

Резистор ограничивает предельный ток через стабилитрон и управляющий переход тиристора, конденсатор снижает вероятность срабатывания защиты при кратковременных бросках питающего напряжения. Следующее устройство (рис. 4.

3) защитит радиоаппаратуру от выхода из строя при случайной переполюсовке или превышении напряжения питания, что нередко бывает при неисправности генератора в автомобиле [4.3].

При правильной полярности и номинальном напряжении питания диод VD1 и тиристор VS1 закрыты, и ток через предохранитель FU1 поступает на выход устройства.

Рис. 4.3. Схема защиты радиоаппаратуры с индикацией аварии

Важно

Если полярность обратная, то диод VD1 открывается, и сгорает предохранитель FU1. Лампа EL1 загорается, сигнализируя об аварийном подключении.

При правильной полярности, но входном напряжении, превышающем установленный уровень, задаваемый стабилитронами VD2 и VD3 (в данном случае — 16 Б), тиристор VS1 открывается и замыкает цепь накоротко, что вызывает перегорание предохранителя и зажигание аварийной лампы EL1. Предохранитель FU1 должен быть рассчитан на максимальный ток, потребляемый радиоаппаратурой.

Элементы ГТЛ-логики обычно работоспособны в узком диапазоне питающих напряжений (4,5…5,5 Б). Если аварийное снижение питающего напряжения не столь опасно для «здоровья» микросхем, то повышение этого напряжения совершенно недопустимо, поскольку может привести к повреждению всех микросхем устройства. На рис. 4.

4 приведена простая и довольно эффективная схема защиты 7777-устройств от перенапряжения, опубликованная в болгарском журнале [4.4]. Способ защиты предельно прост: как только питающее напряжение превысит рекомендуемый уровень всего на 5% (т.е. достигнет величины 5,25 Б) сработает пороговое устройство и включится тиристор.

Через него начинает протекать ток короткого замыкания, который пережигает плавкий предохранитель FU1. Разумеется, в качестве предохранителя нельзя использовать суррогатные предохранители, поскольку в таком случае может выйти из строя блок питания, защищающий схему тиристор, а затем и защищаемые микросхемы.

Недостатком устройства является отсутствие индикации перегорания предохранителя. Эту функцию в устройство несложно ввести самостоятельно. Примеры организации индикации разрыва питающей цепи приведены также в главе 36 книги [1.5].

Рис. 4.4. Схема защиты микросхем ТТЛ от перенапряжения

Рис. 4.5. Схема устройства защиты от перенапряжения, работающего на переменном и постоянном токе

Схема устройства, которое в случае аварии в электросети защитит телевизор, видеомагнитофон, холодильник и т.д. от перенапряжения, приведена на рис. 4.5 [4.5]. Напряжение срабатывания защиты определяется падением напряжения на составном стабилитроне VD5+VD6 и составляет 270 Б.

Конденсаторы С1 и С2 образуют совместно с резистором R1 RC-цепочку, которая препятствует срабатыванию устройства при импульсных выбросах в сети. Схема работает следующим образом. При напряжении в сети до 270 В стабилитроны VD3, VD4 закрыты. Также закрыты и тиристоры VS1, VS2.

Совет

При действующем напряжении более 270 В открываются стабилитроны VD3, VD4, и на управляющие электроды тиристоров VS1, VS2 поступает открывающее напряжение. В зависимости от полярности полупериода сетевого напряжения ток проходит либо через тиристор VS1, либо через VS2.

Когда ток превышает 10 А, срабатывают автоматические выключатели (пробки, плавкие предохранители), отключая электроприборы от электросети. Нагрузка (на рисунке не показана) подключается параллельно тиристорам. Проверить работоспособность устройства можно с помощью ЛАТРа.

Устройство работоспособно и на постоянном токе.

Рис. 4.6. Схема релейного устройства защиты от перенапряжения с самоблокировкой

Устройство защиты от перенапряжения (рис. 4.6) выгодно отличается от предыдущих тем, что в нем не происходит необратимого повреждения элемента защиты [4.6]. Вместо этого при напряжении свыше 14,1 В пробивается цепочка стабилитронов VD1 — VD3, включается и самоблокируется тиристор VS1, срабатывает реле К1 и своими контактами отключает цепь нагрузки.

Восстановить исходное состояние устройства защиты можно только после вмешательства оператора — для этого следует нажать на кнопку SB1. Устройство также переходит в рабочий ждущий режим после кратковременного отключения источника питания. К числу недостатков данного устройства защиты относится его высокая чувствительность к кратковременным перенапряжениям.

Устройство (патент DL-WR 82992) [4.7], принципиальная схема которого приведена на рис. 4.7, может применяться для защиты нагрузки от недопустимо высокого выходного напряжения.

В нормальных условиях транзистор VT1 работает в режиме, когда напряжение между его коллектором и эмиттером небольшое, и на транзисторе рассеивается небольшая мощность (ток базы определяется резистором R1).

Сопротивление стабилитрона VD2 в этом случае большое и тиристор VS1 закрыт.

Рис. 4.7. Схема полупроводникового реле защиты нагрузки от перенапряжения

При возрастании напряжения на выходе устройства выше определенной величины через стабилитрон начинает протекать ток, который приводит к открыванию тиристора. Транзистор VT1 при этом закрывается, и напряжение на выходе устройства становится близко к нулю.

Отключить защиту можно только отключением источника питания.
Описанное устройство должно включаться в выходную цепь стабилизаторов так, чтобы сигнал обратной связи подавался из цепи, расположенной за системой защиты.

При номинальном выходном напряжении 12 В и токе 1 А в устройстве можно применить транзистор КТ802А, тиристор КУ201А — КУ201К, стабилитрон — Д814Б.

Сопротивление резистора R1 должно быть 39 Ом (мощность рассеивания при отсутствии системы автоматики, отключающей стабилизатор от сети, составляет 10 Вт), R2 — 200 Ом, R3 — 1 кОм.

Читайте также:  Можно ли использовать провод пунп для освещения?

Источник: http://lib.qrz.ru/node/9723

Реле защиты от перенапряжения в сети

Защита от перенапряжения сети 220в. Случаи перенапряжения в домашней бытовой, достаточно частое явление, чтобы им пренебрегать. Кроме угрозы возникновения пожаров и электротравм для человека, существует также угроза вывести из строя все подключенные в этот момент электроприборы.

Прибор защиты от перенапряжения в этот момент особенно необходимо. Нужно заранее продумать защиты своего здоровья и техники. Если проводить замеры напряжения в домашней электросети, можно увидеть, что напряжение может значительно колебаться, как ниже 220, так и до нескольких тысяч (молнии).

В этом случае все приборы, не оснащенные средствами защиты, сгорят, а это сулит потерей значительных средств. Исходя из, нормативных актов и ГОСТа отклонения напряжение от номинала не должно превышать 10%, как по верхней и нижней границе.

Чаще всего перенапряжение случается при повреждении провода подключенного к нулю.

Обратите внимание

Второй по частоте причиной стоит признать нарушение технологии подключения к общей электросети, когда на электросети провод, предназначенный для подключения к нулю, подключают к фазе. Внимание: перед любыми работами, необходимо ознакомиться с технологией проведения планируемых работ, техникой безопасности, произвести необходимые измерения.

Лучше всего, всегда проверять любые электропровода и электроприборы мультиметром. Естественным природным источником перенапряжения, являются грозовые молнии, поэтому раньше во время грозы старались отключать все электронные приборы и часто переставал работать интернет.

Потому устройство от перенапряжения в домах отсутствовало, теперь его можно установить самостоятельно.

Защита от перенапряжения

Для защиты приборов от перенапряжения, было придумано множество устройств, которые помогают защитить вашу сеть от перепадов, например, при помощи датчика можно отследить показатель напряжения и если он достигнет экстренной отметки, отключить питание при помощи Устройства Защитного Отключения (сокращенно УЗО). Можно использовать датчики ДПН 260/250 (одно из самых популярных средств, ставится практически во все новые квартиры), которое отключит сеть при 260 или 250 вольт соответственно.

У данного прибора множество разновидностей, всегда применяется на линии электропередач (класс В), в общем электрощите всего дома (также В), на бытовом индивидуальном электрощите (С) и для обеспечения безопасности самых дорогих электроприборов непосредственно около них (D). Соответственно на даче в своем доме прибор защиты от перенапряжения класса С не подойдет, так как он служит для дополнительной защиты, но никак не может являться основным средством.

Устанавливать защиту от перенапряжения обязательно, когда на здании установлен громоотвод или, в случае его отсутствия, если в вашей области грозы длятся более 18 часов в год из расчета на километр в квадрате. Выбирать лучше соответствующие ГОСТу устройства и не экономить на качестве, иначе ваши затраты могут оказаться значительно выше.

Источник: http://ampersite.ru/sovety-elektrika/ustrojstvo-zashchity-ot-perenapryazheniya-kakoe-ono.html

Как организовать защиту от перенапряжения сети в частном доме

Наличие в доме дорогостоящей электробытовой и электронной технике, природные катаклизмы и низкое качество электроснабжения в городских сетях вынуждают собственников жилья принимать меры, чтобы минимизировать возможный ущерб от вышеуказанных факторов.

В данной статье речь пойдёт о практических мерах по защите от перенапряжения, которые можно реализовать при организации электроснабжения частного дома. Причём эти работы можно выполнить как при новом строительстве, так и при модернизации существующих систем электроснабжения частного дома.

Я выполнял указанные работы при переводе электропитания дома с однофазной на трёхфазную схему. Причём работы были не только выполнены, но и приняты представителями горэлектросетей без замечаний, а правильное функционирование приборов и эффективность защиты от перенапряжения проверена на практике в процессе эксплуатации.

Известно, что основным условием подключения к городским электросетям является выполнение технических условий (ТУ), которые выдаются собственнику жилья. Как показал личный опыт, надеяться на то, что в данных ТУ будут отражены все мероприятия по безопасной эксплуатации электрооборудования, можно с определённым скептицизмом.

На фото ниже показаны ТУ, выданные мне в горэлектросетях.

Примечание: пункты, помеченные на фото красным цветом, были мной реализованы самостоятельно ещё до получения тех. условий. Пункт, помеченный синим цветом, больше обусловлен интересами самих горсетей (защитить себя от ответственности за ущерб перед собственником дома по причине возможных проблем в зоне их ответственности).

Поэтому при разработке проекта схемы электроснабжения частного дома было решено использовать дополнительные меры по защите электрооборудования, которые не были отражены в ТУ. Ниже на фото показан фрагмент проекта электроснабжения моего жилого дома.

Как видно из фото, в учётно-распределительном шкафу (ЩР1), устанавливаемом внутри дома, предусмотрено устройство защиты от импульсных перенапряжений (УЗИП-II) согласно требованиям ТУ, выданных городскими электрическими сетями.

Важно

Так как ввод в дом осуществляется по воздушной линии, то с учётом требований ПУЭ (правил устройства электроустановок), на вводе в дом должны устанавливаться ограничители перенапряжений, что и было мной учтено в проекте (УЗИП-I на фото), которые установлены в шкафу (ЩВ1) на фасаде здания. Для защиты индивидуальных электроприёмников в доме используются ИБП (источники бесперебойного питания) и стабилизаторы напряжений.

Таким образом, защита электрооборудования дома от перенапряжений реализована в трёх зонах (уровнях):

  • на вводе в дом
  • внутри дома, в учётно-распределительном шкафу
  • индивидуальная защита электроприборов внутри помещений дома

Защита от перенапряжения

Что важно учесть при выполнении работ

В первую очередь должен отметить специфические особенности, предъявляемые к выполнению электромонтажных работ со стороны представителей городских электросетей.

Для примера с точки зрения учёта потребляемой электроэнергии достаточно поверить и опечатать счётчик электроэнергии.

Но поскольку в каждом из нас они видят «потенциальных расхитителей электроэнергии», то всё, что касается монтажа оборудования, присоединений на участке от городской опоры и до счётчика включительно, должно быть «недоступным для потребителя», закрытым (в боксы, шкафы) и опломбированным. Причём даже в том случае, если эти «требования» противоречат требованиям технической документации на установленное оборудование, создают риск возникновения отказов в работе оборудования и т. д. Более подробно об этих «специфических требованиях» будет сказано ниже.

Теперь о технической стороне вопроса:

Для защиты электрооборудования, установленного в доме, я использовал следующие приборы и аппараты.

1. В качестве УЗИП (устройства защиты от импульсных перенапряжений) — I уровня мной были использованы ограничители перенапряжений нелинейные (ОПН), российского производства (Санкт-Петербург), в количестве трёх штук (по одному, на каждый фазный проводник). Заводское обозначение данных приборов — ОПНд-0,38. Установлены они в опечатанном пластиковом боксе в стальном шкафу на фасаде дома.

Что важно отметить по данному оборудованию:

  • Данные приборы защищают только от импульсных (кратковременных) перенапряжений, возникающих при грозах, а также от кратковременных коммутационных перенапряжений, причём в обе стороны. При длительных перенапряжениях, вызванных авариями и неполадками в городской электросети, данные приборы защиту дома не обеспечат.

  • В техническом плане ОПН представляет собой варистор (нелинейный резистор). Прибор подключается параллельно нагрузке между фазным и нулевым проводом. При появлении бросков (импульсов) напряжения, внутреннее сопротивление прибора моментально снижается, при этом ток через прибор резко и многократно возрастает, уходя в землю.

    Таким образом, происходит сглаживание (снижение) амплитуды импульсного напряжения. В связи с вышесказанным, при монтаже данных приборов нужно обратить особое внимание на устройство контура заземления и надёжного подключения ОПН к нему.

  • В зависимости от схемы электроснабжения дома, количество используемых ОПН может варьироваться. Например, для однофазного воздушного ввода достаточно установить один такой прибор, при питании от городской сети по двухпроводной линии.

    Для трёхфазного воздушного ввода в большинстве случаев достаточно установить три прибора (по числу фаз).

    Если ввод в дом осуществляется по трёхфазной, но пяти проводной схеме, или приборы ставится на участке после разделения общего проводника на нулевой рабочий (N) проводник и защитный проводник (PE), то потребуется установка дополнительного прибора между нулевым и защитным проводником.

2. В качестве УЗИП — II уровня я использовал аппараты УЗМ-50 М (устройство защитное многофункциональное) российского производства.

Из особенностей данных аппаратов можно отметить следующее:

  • В отличие от ОПН, данные аппараты обеспечивают защиту не только от импульсных перенапряжений, но и защиту от длительных (аварийных) перенапряжений и просадок (недопустимого падения напряжения).

  • В конструктивном отношении представляют собой реле контроля напряжения, дополненное мощным реле и варистором, заключенным в один корпус.

  • Для однофазной сети необходимо установить один аппарат, для трёхфазной сети потребуется три аппарата, не зависимо от числа проводников питающей линии.

3.

Третий немаловажный момент, касающийся правильного монтажа и работы УЗИП при их последовательном включении (показаны на фото красными прямоугольниками УЗИП-1 и УЗИП-2) заключается в том, что расстояние между ними (по длине кабеля) должно быть не менее 10 метров. В моём случае оно равно 20 метрам.

Примечание: приобрести указанное оборудование (ОПН и УЗМ) в моём городе оказалось невозможным, ввиду его отсутствия в продаже, заказывал через интернет. Такой расклад навеял мысль о том, что вопросу защиты электрооборудования, по крайней мере, в нашем городе, внимания практически никто не уделяет.

Практическое выполнение работ

Практическое выполнение работ не представляет собой большой сложности и показано на фото ниже, с небольшими пояснениями.

Монтаж ОПН-0,38 на вводе в дом

На фото показан монтаж ОПН в пластиковом боксе. Из особенностей нужно учесть, что специальных боксов для ОПН не существует, ибо конструктивно они крепятся на опорной конструкции и по типу своего исполнения могут устанавливаться открыто.

Установка ОПН в боксе — мера вынужденная. Бокс должен иметь возможность для пломбировки.

Для установки ОПН в боксе сделана самодельная конструкция из оцинкованной стали толщиной 1 мм, которая закреплена вместо штатной дин рейки, установленной в боксе на заводе-изготовителе.

При монтаже ОПН и подключении к ним проводов использование граверных шайб — обязательно. По требованиям ТУ, вводной автомат должен устанавливаться в боксе с возможностью пломбировки. Использовался аналогичный бокс, как для ОПН, что и показано на фото ниже (верхний пластиковый бокс в металлическом шкафу).

Такое нагромождение конструкций (пластиковых боксов в металлическом шкафу) на фасаде дома, обусловлено, как я отмечал ранее, именно специфическими требованиями горэлектросетей и вызывает не только заметное удорожание работ, но и дополнительных затрат сил, времени и нервов.

На мой взгляд, правильное в техническом плане выполнение работ при воздушном вводе, выполненное проводом СИП, должно бы быть следующим: от опоры горэлектросетей до фасада дома прокладываем провод СИП, крепим на фасаде дома и обрезаем с небольшим напуском.

Совет

Затем на каждый провод СИП крепим прокалывающий зажим с отводом из медного провода сечением 10 мм2, который заводится в шкаф (или бокс) на клеммы вводного автомата. Срезы проводов СИП закрываем герметичными колпачками. Таким образом, мы правильно «перешли» с алюминия (провод СИП) на медь.

При этом у нас не возникло бы проблем с подключением медного провода (сечением 10 мм2) к клеммам модульного вводного автомата. Но такую работу представители горсетей не примут.

Поэтому провод СИП сечением 16 мм2 необходимо завести непосредственно на клеммы вводного автомата, который должен быть установлен в пластиковый бокс. Сделать это на практике очень сложно, так как нужно сохранить степень защиты бокса (для наружной установки не ниже IP 54), при этом провод СИП должен быть зафиксирован по отношению к пластиковому боксу и т. д.

На практике пришлось просто купить ещё один стальной шкаф, в котором установил сами пластиковые боксы, затем провод СИП был заведён в шкаф и закреплён в нём. Ниже на фото показаны завершающие работы по монтажу шкафа и его крепления на фасаде дома. Работы были приняты без замечаний и претензий.

Ещё один важный момент, на который нужно обратить внимание, связан с тем, что ОПН при работе во время грозы отводит ток в землю посредством подключения самого ОПН к контуру заземления. При этом токи могут достигать значительных величин: от 200 — 300 А и до нескольких тысяч ампер.

Поэтому важно обеспечить кратчайший путь от самих ОПН до контура заземления медным проводником сечением не менее 10 мм2. Ниже на фото показано, как данное подключение выполнил я. Для надёжности работы ОПН я сделал подключение приборов к контуру заземления двумя медными проводами сечением 10 мм2 каждый.

На фото провод в желто-зеленой трубке ТУТ (термоусаживающаяся трубка).

Монтаж аппаратов УЗМ-50М в учётно-распределительном шкафу

Выполнение электромонтажных работ проблем не доставляет, поскольку аппараты имеют штатное крепление на DIN-рейку. Фрагмент выполнения работ по монтажу УЗМ-50М в шкафу показан на фото ниже. Аппараты также должны устанавливаться в пластиковый бокс с возможностью пломбирования. На фото верхняя крышка бокса не показана.

С точки зрения электрической схемы подключения (хотя схема имеется в паспорте на аппарат и на корпусе самого аппарата) у неподготовленного читателя могут возникнуть вопросы. Чтобы пояснить особенности подключения аппарата, ниже на рисунке приводится схема подключения, приведённая в паспорте на УЗМ-50М, с некоторыми моими пояснениями.

Во-первых, как видно из схемы, УЗМ-50М является однофазным коммутирующим аппаратом и для своего функционирования требует обязательного подключения проводников L и N к верхним клеммам.

Это показано на схеме подключения в обоих случаях (а и б).

Обратите внимание

Далее, между схемой а и схемой б появляется различие, о котором производитель не даёт ни какого пояснения и приходится потребителю самостоятельно додумывать, как и в каких случаях какую схему использовать.

Различие заключается в том, что по верхней схеме (а) нагрузка подключается к аппарату по двум проводам (L и N). Т. е. в случае аварийного срабатывания аппарата цепь будет разорвана как по фазному проводнику (L), так и по проводнику (N).

В нижней схеме (б) нагрузка к аппарату подключается только по одному фазному проводнику (L), а второй провод (N) подключается к нагрузке напрямую, минуя аппарат. Т. е.

в случае аварийного срабатывания аппарата он разомкнёт только фазный проводник, а проводник N остаётся подключенным всегда.

Исходя из вышесказанного, а также зная, в каком случае допускается разрывать проводник N, а в каком — не допускается, можно сделать следующий вывод:

В случае подключения дома (квартиры) по двухпроводной линии (система TN-C), необходимо подключать аппарат УЗМ-50М по нижней схеме (б), так как в этом случае провод N выполняет две функции (нулевого рабочего проводника и нулевого защитного проводника), и его разрывать ни в коем случае нельзя.

В случае если подключение дома (квартиры) выполнено по трёхпроводной схеме (TN-S), либо аппарат установлен в системе (TN-C-S), на участке после разделения общего (PEN) проводника (на N и PE), то провод N можно разрывать.

В этом случае аппарат УЗМ-50М нужно подключать по верхней схеме (а). Почему аппарат, согласно схеме производителя, нужно подключать после счётчика (на рисунке поставил знак вопроса) — мне малопонятно.

Важно

Я, например, свои аппараты в шкафу подключал до счётчика, что бы они защищали всё оборудование, установленное в доме, в том числе и оборудование, установленное в самом шкафу.

Кроме того, поскольку разделение общего PEN выполнено в шкафу (ЩР1) в доме, то подключал аппараты защиты по схеме а, т. е. с отключением как фазных, так и нулевого проводников. Что и показано на фото ниже.

Ещё один важный момент: поскольку данные аппараты не предназначены для использования в многофазной сети то необходимо знать и учитывать следующее.

В случае трёхфазного подключения дома и использования данных аппаратов, если в доме имеются только однофазные электроприёмники, никаких проблем с использованием и работой данных аппаратов быть не должно.

Но если в доме имеются трёхфазные потребители, например, трёхфазный электродвигатель, то в случае аварийного срабатывания аппаратов (одного или двух), трёхфазный электроприёмник (например, электродвигатель) может выйти из строя.

Таким образом, в данном случае потребуются дополнительные технические мероприятия по отключению трёхфазных потребителей при аварийном срабатывании аппаратов УЗМ.

Использование индивидуальных защитных приборов

Применение ИБП стабилизаторов напряжения для защиты отдельных электроприёмников в доме (телевизор, компьютер и т. д.) настолько стало привычным и распространённым, что какого-либо особого пояснения не требует, поэтому здесь не приводится.

Выводы

1. Опыт эксплуатации показал, что при сильной грозе защита может работать неоднократно, на относительно небольшом промежутке времени.

С учётом этого можно смело утверждать, что при сильных грозах и при отсутствии защиты, электрооборудование, установленное в доме, может быть выведено из строя с достаточно высокой степенью вероятности.
2.

В случае невозможности выполнения аналогичных работ в своём доме, в качестве защитной меры при грозовых разрядах необходимо хотя бы отключать электроприборы от сети, что, кстати, делают далеко не все.

Совет

Данный вариант защиты электрооборудования является недорогим бюджетным решением, но вполне работоспособным, надёжным и проверенным на практике. В случае применения аналогичного оборудования импортного производства и приглашения для выполнения работ специалистов цена вопроса может увеличиться в разы, что даже для средне обеспеченной семьи может быть накладно.

Источник: https://dvamolotka.ru/post/9069-kak-organizovat-zaschitu-otperenapryazheniya-seti-vchastnom-dome

Ссылка на основную публикацию
Adblock
detector