Самодельный ваттметр из индукционного счетчика

:: СХЕМА ВАТТМЕТРА ::

   Если вы стараетесь экономить энергию для уменьшения счетов за свет, то вам необходим прибор для контроля потребляемой мощности – ваттметр. Такое устройство позволит измерить энергопотребление техники в том числе и в дежурном режиме.

Принципиальная схема простого ваттметра

   Схема предлагаемого ваттметра работает по принципу датчика трансформатора тока. В качестве него можно взять обычный сетевой трансформатор с первичкой примерно 3000 витков на железном сердечнике. Эта катушка будет в качестве вторичной обмотки. Отношение тока, протекающего через первичную обмотку, является обратной отношению числа витков.

   Однополупериодный выпрямитель выполнен на основе германиевых диодов.

Резистор R2 уменьшает чувствительность ваттметра в 10 раз, когда надо измерить мощность электрочайника, тепловентилятора и других мощных потребителей. Индикация выполняется стрелочным микроамперметром.

Обратите внимание

Его шкалу можно проградуировать, для удобства. Настройка производится либо по эталонному цифровому ваттметру, либо по бытовому прибору, с заранее известной мощностью.

Поделитесь полезными схемами

   Установку и регулирование как напряжения срабатывания, так и напряжения отпускания реле можно осуществить путем последовательного включения с его катушкой регулировочных сопротивлений, одно из которых зашунтировано замыкающим контактом исполнительного реле. Наличие двух последовательно соединенных сопротивлений необходимо по той причине, что напряжение отпускания значительно меньше напряжения срабатывания.
    Изучая схемотехнику автомобильных усилителей мощности, наткнулся на очень интересный моноблок предназначенный для питания автомобильного сабвуфера.
   Как подключить внутреннюю подсветку в шкафу или серванте гостинной – пример и описание с пошаговым фотообзором.
    Ионизатор -приспособление, которое предназначено для очистки и повышения качества окружающего нас воздуха. Если у вас есть дети, то ионизатор – необходим вам и вашей семье, поскольку организм детей особо чувствителен к микробам, которые могут поступить в организм из воздуха.
   Охранное устройство с высоким напряжением – электрический ежик. Сегодня мы продолжим беседы про конструкции которые нужны для оxраны нашего жилища. Устройство, которое мы сейчас будем рассматривать предназначено для оxраны квартиры , офиса, дачи и автомобиля. Называется устройство – высоковольтный электрический ежик!

Источник: http://samodelnie.ru/publ/samodelnye_pribory/skhema_vattmetra/5-1-0-159

Схема подключения однофазного счётчика

   Наверное многие интересовались, как устроен счётчик электроэнергии, но не все могут узнать это.

Можно конечно посмотреть в Википедии, скажут некоторые, но это не наш стиль! То ли дело когда ты сам узнаешь, а не читаешь то, что напечатали другие. Можешь пощупать, понюхать и.т.д.

Я до недавнего времени тоже не видел, как устроен счётчик, только слышал и читал. А недавно в соседнем доме делали ремонт и выкидывали просто горы однофазных электросчётчиков. Взял один и принёс домой. Вот он: 

   История создания счётчиков связана с изобретениями всяких электротехнических бытовых устройств. Так как все они потребляли энергию, то её нужно было как-то подсчитывать. Для учёта электроэнергии переменного тока, есть трёхфазные (для 380 В, 50 Гц) и однофазные (220 В, 50 Гц) приборы учёта. У нас счётчик однофазный.

Для учёта расхода электроэнергии постоянного тока (электрический транспорт, электрифицированная железная дорога) используют электродинамические счётчики. Число оборотов подвижной части прибора, пропорциональное количеству электроэнергии, регистрируется счётным механизмом. Но вернёмся к нашему девайсу.

Вот мы только что вскрыли ещё пломбированный однофазный счётчик и заглянули внутрь:

   С помощью счетчиков можно узнать сколько ты израсходовал энергии. Они бывают электронные и индукционные. Обычный однофазный счётчик состоит из двух магнитов, которые стоят друг напротив друга. Между ними находится алюминиевый подвижный диск, который вращается под действием магнитного поля, которое создают катушки.

Важно

Когда ток проходит через обмотки катушек, то создается магнитное поле, которое действует на диск и приводит его в движение. Диск связан со счётным механизмом. Который в свою очередь тоже будет вращаться и происходит учёт энергии. Счётчик устроен почти, как и мотор, только во втором нет счётного механизма и прочего обвеса.

Вид на механизм сбоку:

   Токовая обмотка состоящая из малого числа витков:

   Алюминиевый диск, который вращается за счёт магнитного поля и своим вращением заставляет «двигаться циферки».

   На этом фото постоянный магнит, он служит своеобразным притормаживателем диска:

   Обмотка напряжения, которая является основной в счётчике:

   Счётный механизм.

   И куча железа и болтов, которые входят в состав счётчика.

   Схема правильного подключения однофазного счётчика к сети (два одинаковых варианта):

   Мы рассмотрели устройство простого однофазного индукционного счётчика. Но в настоящее время предприятия, дома и прочие потребители переходят на электронные приборы учёта. Тем не менее такие «большие и чёрные коробки» всё ещё занимают достойное место в наших подъездах и квартирах. И так-же, как и «лампочки Ильича», уйдут довольно не скоро из нашего быта. В статье изложен необходимый минимум информации, так как данный материал именно для тех, кто только начинает свой путь в электронике и знакомстве с разными приборами. В следующих статьях мы узнаем устройство других электронных приборов. А пока до встречи на страницах сайта! С вами был Алексей Иванов – Alex1.   Электротехника

Источник: http://elwo.ru/index/86-542-5-3

Индукционные нагреватели своими руками – как сделать? Простая схема и инструкция

Индукционные нагреватели работают по принципу “получение тока из магнетизма”. В специальной катушке генерируется переменное магнитное поле высокой мощности, которое порождает вихревые электрические токи в замкнутом проводнике.

Замкнутым проводником в индукционных плитах является металлическая посуда, которая разогревается вихревыми электрическими токами. В общем, принцип работы таких приборов не сложен, и при наличии небольших познаний в физике и электрике, собрать индукционный нагреватель своими руками не составит большого труда.

Самостоятельно могут быть изготовлены следующие приборы:

  1. Приборы для нагрева теплоносителя в котле отопления.
  2. Мини-печи для плавки металлов.
  3. Плиты для приготовления пищи.

Индукционная плита своими руками, должна быть изготовлена с соблюдением всех норм и правил для эксплуатации данных приборов. Если за пределы корпуса в боковых направлениях будет выделяться опасное для человека электромагнитное излучение, то использовать такой прибор категорически запрещается.

Кроме этого большая сложность при конструировании плиты заключается в подборе материала для основания варочной поверхности, которое должно удовлетворять следующим требованиям:

  1. Идеально проводить электромагнитное излучение.
  2. Не являться токопроводящим материалом.
  3. Выдерживать высокую температурную нагрузку.

В бытовых варочных индукционных поверхностях используется дорогая керамика, при изготовлении в домашних условиях индукционной плиты, найти достойную альтернативу такому материалу – довольно сложно. Поэтому, для начала следует сконструировать что-нибудь попроще, например, индукционную печь для закалки металлов.

Инструкция по изготовлению

Чертежи

Рисунок 1. Электрическая схема индукционного нагревателяРисунок 2. Устройство.Рисунок 3. Схема простого индукционного нагревателя

Для изготовления печи понадобятся следующие материалы и инструменты:

  • паяльник;
  • припой;
  • текстолитовая плата.
  • мини-дрель.
  • радиоэлементы.
  • термопаста.
  • химические реагенты для травления платы.

Дополнительные материалы и их особенности:

  1. Для изготовления катушки, которая будет излучать необходимое для нагрева переменное магнитное поле, необходимо приготовить отрезок медной трубки диаметром 8 мм, и длиной 800 мм.
  2. Мощные силовые транзисторы являются самой дорогой частью самодельной индукционной установки. Для монтажа схемы частотного генератора необходимо приготовить 2 таких элемента. Для этих целей подойдут транзисторы марок: IRFP-150; IRFP-260; IRFP-460. При изготовлении схемы используются 2 одинаковых из перечисленных полевых транзисторов.
  3. Для изготовления колебательно контура понадобятся керамические конденсаторы ёмкостью 0,1 mF и рабочим напряжением 1600 В. Для того, чтобы в катушке образовался переменный ток высокой мощности, потребуется 7 таких конденсаторов.
  4. При работе такого индукционного прибора, полевые транзисторы будут сильно разогреваться и если к ним не будут присоединены радиаторы из алюминиевого сплава, то уже через несколько секунд работы на максимальной мощности, данные элементы выйдут из строя. Ставить транзисторы на теплоотводы следует через тонкий слой термопасты, иначе эффективность такого охлаждения будет минимальна.
  5. Диоды, которые используются в индукционном нагревателе, обязательно должны быть ультрабыстрого действия. Наиболее подходящими для данной схемы, диоды: MUR-460; UF-4007; HER – 307.
  6. Резисторы, которые используются в схеме 3: 10 кОм мощностью 0,25 Вт – 2 шт. и 440 Ом мощностью – 2 Вт. Стабилитроны: 2 шт. с рабочим напряжением 15 В. Мощность стабилитронов должна составлять не менее 2 Вт. Дроссель для подсоединения к силовым выводам катушки используется с индукцией.
  7. Для питания всего устройства понадобится блок питания мощностью до 500. Вт. и напряжением 12 – 40 В. Запитать данное устройство можно от автомобильного аккумулятора, но получить наивысшие показания мощности при таком напряжении не получится.

Сам процесс изготовления электронного генератора и катушки занимает немного времени и осуществляется в такой последовательности:

  1. Из медной трубы делается спираль диаметром 4 см. Для изготовления спирали следует медную трубку накрутить на стержень с ровной поверхностью диаметром 4 см. Спираль должна иметь 7 витков, которые не должны соприкасаться. На 2 конца трубки припаиваются крепёжные кольца для подключения к радиаторам транзистора.
  2. Печатная плата изготавливается по схеме. Если есть возможность поставить полипропиленовые конденсаторы, то благодаря тому, что такие элементы обладают минимальными потерями и устойчивой работой при больших амплитудах колебания напряжений, устройство будет работать намного стабильнее. Конденсаторы в схеме устанавливаются параллельно образуя с медной катушкой колебательный контур.
  3. Нагрев металла происходит внутри катушки, после того как схема будет подключена к блоку питания или аккумулятору. При нагреве металла необходимо следить за тем, чтобы не было короткого замыкания обмоток пружины. Если коснуться нагреваемым металлом 2 витка катушки одновременно, то транзисторы выходят из строя моментально.

Нюансы

  1. При проведении опытов по нагреву и закалке металлов, внутри индукционной спирали температура может быть значительна и составляет 100 градусов Цельсия. Этот теплонагревательный эффект можно использовать для нагрева воды для бытовых нужд или для отопления дома.

  2. Схема нагревателя рассмотренного выше (рисунок 3), при максимальной нагрузке способна обеспечить излучение магнитной энергии внутри катушки равное 500 Вт.

    Такой мощности недостаточно для нагрева большого объёма воды, а сооружение индукционной катушки высокой мощности потребует изготовление схемы, в которой необходимо будет использовать очень дорогие радиоэлементы.

  3. Бюджетным решением организации индукционного нагрева жидкости, является использование нескольких устройств описанных выше, расположенных последовательно. При этом, спирали должны находиться на одной линии и не иметь общего металлического проводника.

  4. В качестве теплообменника используется труба из нержавеющей стали диаметром 20 мм. На трубу «нанизываются» несколько индукционных спиралей, таким образом, чтобы теплообменник оказался в середине спирали и не соприкасался с её витками.

    При одновременном включении 4 таких устройств, мощность нагрева будет составлять порядка 2 Квт, что уже достаточно для проточного нагрева жидкости при небольшой циркуляции воды, до значений позволяющих использовать данную конструкцию в снабжении тёплой водой небольшого дома.

  5. Если соединить такой нагревательный элемент с хорошо изолированным баком, который будет расположен выше нагревателя, то в результате получится бойлерная система, в которой нагрев жидкости будет осуществляться внутри нержавеющей трубы, нагретая вода будет подниматься вверх, а её место будет занимать более холодная жидкость.

  6. Если площадь дома значительна, то количество индукционных спиралей может быть увеличено до 10 штук.
  7. Мощность такого котла можно легко регулировать путём отключения или включения спиралей. Чем больше одновременно включённых секций, тем больше будет мощность работающего таким образом отопительного устройства.

  8. Для питания такого модуля понадобится мощный блок питания. Если есть в наличии инверторный сварочный аппарат постоянного тока, то из него можно изготовить преобразователь напряжения необходимой мощности.

  9. Благодаря тому, что система работает на постоянном электрическом токе, который не превышает 40 В, эксплуатация такого устройства относительно безопасна, главное обеспечить в схеме питания генератора блок предохранителей, которые в случае короткого замыкания обесточат систему, там самым исключив возможность возникновения пожара.
  10. Можно таким образом организовать “бесплатное” отопление дома, при условии установки для питания индукционных устройств аккумуляторных батарей, зарядка которых будет осуществляться за счёт энергии солнца и ветра.
  11. Аккумуляторы следует объединить в секции по 2 шт., подключённые последовательно. В результате, напряжение питания при таком подключении будет не менее 24 В., что обеспечит работу котла на высокой мощности. Кроме этого, последовательное подключение позволит снизить силу тока в цепи и увеличить срок эксплуатации аккумуляторов.
Читайте также:  Можно ли использовать провод сечением 0,75 мм.кв. для подключения точечных светильников?

Блиц-советы

  1. Эксплуатация самодельных устройств индукционного нагрева, не всегда позволяет исключить распространение вредного для человека электромагнитного излучения, поэтому индукционный котёл следует устанавливать в нежилом помещении и экранировать оцинкованной сталью.

  2. Обязательно при работе с электричеством следует соблюдать правила техники безопасности, особенно это касается сетей переменного тока напряжением 220 В.

  3. В качестве эксперимента можно изготовить варочную поверхность для приготовления пищи по схеме указанной в статье, но эксплуатировать данный прибор постоянно не рекомендуется по причине несовершенства самостоятельного изготовления экранирования данного устройства, из-за этого возможно воздействие на организм человека вредного электромагнитного излучения, способного негативно сказаться на здоровье.

0,00, (оценок: 0)Загрузка…

Источник: https://housetronic.ru/otoplenie/obogrevateli/elektroobogrevateli/indukcionnye-svoimi-rukami.html

Счетчики электрической энергии переменного тока, страница 5

Также погрешность измерения данным счётчиком зависит от температуры из-за изменения сопротивления алюминиевого диска. 

4 Схемы включения индукционных счётчиков

 Теоретические сведения

Индукционные счётчики состоят из ваттметров и интегрирующих механизмов (отсчетное устройство), поскольку энергия равна интегралу от мощности. Активная мощность в трехфазных цепях при наличии не симметрии может быть измерена в общем случае двумя способами:

– методом двух ваттметров;

– методом трех ваттметров.

Метод двух ваттметров

Этот метод       применяется в асимметричных трехпроводных  цепях трехфазного тока. Для трехпроводной асимметричной системы активная мощность трехфазной цепи может быть выражена следующим образом:

             Р = UАС * IфА * cos (1 ) + UВС * IфВ * cos (2 ),

                             Р = UАВ * IфА * cos (3 ) + UС В* IфС * cos (4 ),                        (4.1)

            Р = UВА * IфВ * cos (5 ) + UС А* IфС * cos (6),

где UАС , UВС , … , IфА , IфВ , IфС  – действующие значения линейных напряжений и фазных токов; 1 , 2 , … , 6 , – углы сдвига фаз между соответствующими напряжениями и токами.

На основании выражений (4.1) можно получить три варианта схем подключения приборов (рис.4.1).

Рис. 4.1 Схемы подключения приборов по методу двух ваттметров

Если предположить симметрию нагрузки и питающего напряжения,  то для схемы рис. 4.1, б можно записать

                          Р1 = UАВ * IфА * cos (30 0 +),

                          Р2 = UС В* IфС * cos (30 0 – ). (4.2)

Таким образом,    полная активная        мощность трехфазной системы находится путем алгебраического суммирования показаний ваттметров.

Метод трех ваттметров

Применяется для измерения активной мощности четырехпроходной  несимметричной  системы. Активная мощность определится из выражения

        Р = UфА * IфА * cos (1 ) + UфВ * IфВ * cos (2 ) + UфС * IфС * cos (3 ),                      (4.3)

Совет

где , – действующие значения соответствующих напряжений и токов;

1 ,2 ,– угол сдвига между соответствующими фазными напряжениями и токами.

Схема подключения приборов по данному методу показана на рис. 4.2.

Рис.4.2 Схема подключения приборов по методу трех ваттметров

Арифметическая сумма показаний трех  приборов дает  мощность трехфазной системы. Метод двух ваттметров в рассматриваемом случае не применим,  так как при наличии не симметрии в системе сумма фазных токов не равна нулю.

Измерение реактивной мощности         

Под реактивной мощностью понимается

                                                    Q = U* I* sin().                                                          (4.4)

Реактивную мощность в трехфазной цепи можно измерить с помощью ваттметров путем соответствующего включения параллельной обмотки ваттметра.

Метод двух ваттметров

Схема включения приборов приведена на рис.4.3. Схема двух ваттметров позволяет  измерить реактивную  мощность в трехфазной асимметричной цепи. Для получения значения реактивной мощности трехфазной системы сумму  показаний ваттметров нужно умножить на/2.

Метод трех ваттметров

     Применяется для измерения реактивной мощности в трехпроводной и четырехпроводной асимметричной цепи.

     Для того, чтобы найти реактивную мощность системы, сумму показаний ваттметров необходимо разделить на.

Рис. 4.3 Схема подключения двух ваттметров для измерения

реактивной мощности

5 Статические (электронные) счётчики

На рис. 5.1 приведена блок-схема статического счётчика СОЭБ-1

Рис. 5.1 Блок-схема электронного счётчика СОЭБ-1

Данный счётчик измеряет количество израсходованной энергии вне зависимости от направления активной мощности, что является защитой от уменьшения его показаний за счет применения отмотчиков электроэнергии.

Счётчик СОЭБ-1 не выявляет шунтирование клемм, использования подключения нагрузки на землю.

Микропроцессорные счётчики определяют показатели качества электроэнергии.

6 Размещение и монтаж

Монтировать счётчики необходимо на стенах или щитах, не подверженных вибрации; рекомендуемая высота от пола 1,4 – 1,7 м.

Обратите внимание

Крепить счётчик следует на три винта, обеспечив вертикальное положение счётчика с допустимым отклонением не более 1°.

На рис. 6 приведены примеры подключения счетчиков электроэнергии.

Рис. 6 Примеры подключения счетчиков электроэнергии

Вопросы

1.Нарисовать структурную схему электронного счетчика активной энергии.

2.Объяснить разницу между параметрическими множительными устройствами прямого и косвенного перемножения.

3.Какие способы предотвращения хищения электроэнергии используются в электронных счетчиках активной энергии. Какие способы хищений удается предотвратить?

4.Какие способы предотвращения хищения электроэнергии используются в индукционных счетчиках активной энергии. Какие способы хищений удается предотвратить, а какие нет?

5.Каким образом создается тормозной момент в индукционном счетчике активной энергии?

6.Какие причины вызывают появление дополнительных погрешностей индукционного счетчика активной энергии?

7.Какое значение имеет порог чувствительности, зависит ли оно от класса точности счетчика электроэнергии?

8.Нарисовать график зависимости погрешности индукционного счетчика активной энергии от нагрузки.

Важно

9.Объяснить, каким образом учитывается погрешность в результатах измерения энергии измерительных трансформаторов, использующихся совместно со счетчиками.

10.Объяснить, что подразумевается под термином “номинальная постоянная” счетчика?

Источник: https://vunivere.ru/work15073/page5

Поверка индукционного счетчика активной энергии

Продолжительность лабораторной работы – 4 ч., самостоятельной работы – 2 ч.

Цель работы

– изучить назначение, конструкцию, принцип действия и основные технические, метрологические и эксплуатационные характеристики электромеханического счетчика индукционной системы для измерения активной энергии;

– усвоить методику поверки однофазного счетчика электрической энергии;

– приобрести навыки работы с электромеханическим счетчиком;

– научиться подключать прибор в сеть электропитания, определять класс точности, действительную и номинальную постоянные, строить и анализировать нагрузочную характеристику, определять порог чувствительности П счетчика.

Программа работы

1 Изучить электрическую схему поверки счетчика.

Определить сопротивления обмоток счетчика с помощью универсального прибора типа 43101, и учесть, что последовательная обмотка RA (электромагнит последовательного подключения) имеет малое сопротивление, а параллельная обмотка RV (электромагнит параллельного подключения) – большое. Определить
генераторные зажимы обмоток счетчика.

2 Собрать схему поверки электромеханического счетчика (рисунок 7.3). Перед сборкой схемы лабораторный автотрансформатор (ЛАТР) должен быть отключен от сети, а движок регулятора напряжения установлен на 0.

Рисунок 7.3

3 Провести испытания счетчика, для чего включить схему под номинальное напряжение 220 В и произвести 10–15 замеров израсходованной электроэнергии, изменяя ток от минимального до номинального – 5 А.

При нагрузках от 1 до 3 А определять время t двадцати, а при нагрузках свыше трех ампер – время пятидесяти оборотов диска. Отсчитывать необходимо целое число оборотов по красной риске на торце диска, а время замерять секундомером.

Одновременно фиксировать показания электродинамического ваттметра класса точности 0,2. Результаты испытаний и расчетов записать

в таблицу 7.2.

Таблица 7.2 – Результаты испытаний электромеханического счетчика

U = Uном I P N T Cн Cд γ Примечание
В А Вт Об с Вт×с/об Вт×с/об %
0,25
0,5
0,75
1,0
1,25
1.75
2,0
2,5
2,75
3,0
3,5
4,0
4,25
4,5
5,0

4 Рассчитать постоянную номинальную Сн, используя паспортные данные счетчика типа СО-1. В обозначении счетчика: С – счетчик; О – однофазный. Номинальной постоянной счетчика называется величина, обратная передаточному числу, т.е. энергия, регистрируемая счетчиком за один оборот диска. Передаточное число указывается в паспортных данных счетчика,
например, 1 кВт×ч = 2500 об.

5 Определить по результатам математической обработки экспериментальных данных относительную погрешность g при различных значениях тока нагрузки и установить класс точности счетчика.

6 Определить с помощью моста постоянного тока МО-62 или универсального прибора 43101 сопротивление обмоток счетчика и вычислить собственное потребление активной мощности обмотками тока и напряжения.

Совет

7 Собрать схему (рисунок 7.4) для определения чувствительности и самохода счетчика.

Рисунок 7.4

8 Определить чувствительность счетчика. Порог чувствительности П определяется наименьшим значением тока, который вызывает вращение диска без остановки. Результат измерений занести в таблицу 7.2. Порог чувствительности для счетчика СО-1 класса точности 2,5 не должен превышать 1,0 %.

9 Проверить счетчик на самоход.

10 Построить нагрузочную кривую счетчика g = F(I/Iн), используя
результаты п. 3 программы работы (таблица 7.2 пп. 3 и 9).

11 Сделать письменный вывод о качестве поверенного счетчика на основе протокола поверки (таблица 7.2).

Приборы, используемые при выполнении лабораторной работы

1 Счетчик активной энергии СО-1.

2 Ваттметр электродинамический Д566.

3 Лабораторный автотрансформатор.

4 Амперметр Э538 (5 А).

5 Реостат нагрузочный (180 Ом, 5 А).

6 Реостат высокоомный (5 кОм, 0,25 А).

7 Вольтметр Э59 (250 В).

8 Миллиамперметр Э59 (50 мА).

9 Секундомер механический.

Читайте также:  Существуют ли ограничения по установке многотарифного счетчика?

Пояснения к работе

Поверяемый счетчик представляет собой измерительное устройство, схема включения которого под нагрузку Н показана на рисунке 7.5, где Г – генераторный вход, I – ток электроприемника, U – напряжение электрической сети.

Отличительной особенностью индукционного счетчика от стрелочного прибора является то, что угол поворота алюминиевого диска не ограничивается противодействующей пружиной, а имеет нарастающее значение, причем каждому обороту диска соответствует определенное значение измеряемой физической величины.

Рисунок 7.5

Конструктивно индукционный счетчик состоит из подвижной и неподвижной частей.

В подвижную часть входит круглый диск (3) из легкого электропроводящего металла или сплава, закрепленный на оси (4), керн-подпятник (5), часть зубчатой передачи (8); основные детали неподвижной части: электромагниты последовательного (2) и параллельного (1) подключения к нагрузке Н, подшипник (6), П-образный постоянный магнит (7), создающий противодействующий момент, Г-образная стальная пластина для устранения самохода диска, прикрепленная к сердечнику катушки напряжения.

Ток IV, протекающий по обмотке напряжения 1, создает переменный магнитный поток Фоб, часть которого Фv, пересекает диск. Значение этого потока пропорционально напряжению сети U.

Обратите внимание

Ток, протекающий через последовательную обмотку 2, создает переменный магнитный поток ФI также пересекающий диск. Так как магнитопровод имеет U-образную конструкцию, поток ФI пересекает диск дважды.

Согласно закону электромагнитной индукции, в диске наводятся вихревые токи (токи трансформации) iV и iI, которые замыкаются вокруг следов соответствующих потоков.

Между током iI и потоком ФU с одной стороны и между током iU и потоком ФI с другой стороны возникают электромеханические
силы взаимодействия, которые и создают вращающий момент. Этот результирующий вращающий момент пропорционален произведению магнитных потоков и синусу угла сдвига фаз между ними y:

Мвр = k1fФUФI siny,

где k1 – коэффициент пропорциональности;

f – частота изменения потоков.

Анализ формулы вращающего момента показывает, что на постоянном токе Мвр = 0, т.е. счетчик неработоспособен.

Таким образом, для создания вращающего момента диска необходимо наличие двух потоков, сдвинутых по фазе и в пространстве /1/.

Активная мощность, потребляемая однофазным электроприемником, определяется по формуле

P = UIcosj,

где j – угол сдвига фаз между током и напряжением.

Если осуществить в счетчике каким-либо конструктивным приемом постоянное выполнение равенства

sin y = cos j,

то вращающий момент счетчика будет пропорционален измеряемой активной мощности, т.е.

Мвр = с1 Р.

Скорость вращения диска стабилизируется, когда вращающий момент будет уравновешен тормозным.

Чтобы значение тормозного момента было строго определенным, необходимо в конструкцию счетчика внести постоянный магнит, тогда диск, вращаясь между полюсами магнита пересекает его магнитные силовые линии. В диске наводится ЭДС, пропорциональная его частоте вращения.

Электромеханическая сила взаимодействия потока и тока, им вызванного, направлена против движения диска, т.е. создает тормозной момент Мт. Этот момент так же, как и наведенная ЭДС, пропорционален скорости вращения диска:

,

где с2 – коэффициент пропорциональности; a – угол поворота диска.

Крепление магнита позволяет перемещать его в радиальном направлении. Этим обеспечивается регулировка тормозного момента Мт, а следовательно, и скорости вращения. При приближении магнита к центру скорость вращения диска уменьшается.

Важно

Определенная для данной нагрузки скорость вращения установится при равенстве вращающего и тормозного моментов, т.е.

Мвр = Мт

или

с1 Р =.

Интегрируя обе части этого выражения, получим

,

откуда

PT = cN,

где N – число оборотов диска, сделанное за отрезок времени T;

c – постоянная счетчика.

Следовательно, чтобы определить энергию W, потребляемую нагрузкой за время T, необходимо число оборотов, которое сделает диск, умножить на постоянную индукционного механизма С.

Поверка счетчика – способ признания счетчика пригодным к применению на основании экспериментальных результатов контроля соответствия его метрологических характеристик установленным требованиям, может быть проведена с помощью образцового ваттметра и секундомера; образцового счетчика; контрольной станции.

Ток, протекающий по цепи «токовая обмотка счетчика – нагрузка Н», сопровождается потреблением энергии от генератора Г. Погрешность индукционного счетчика зависит от тока нагрузки. В области нагрузок до 5 % счетчик работает неустойчиво.

В диапазоне 5-10 % счетчик работает с положительной погрешностью, объясняемой перекомпенсацией (компенсационный момент превышает момент трения подшипников).

При дальнейшем увеличении нагрузки до 20 % погрешность счетчика становится отрицательной из-за изменения магнитной проницаемости стального сердечника при малых токах последовательной обмотки. С наименьшей погрешностью счетчик работает в пределах от 20 до 50 % нагрузки.

Нагрузка счетчика свыше 100 % приводит к возникновению отрицательной погрешности из-за эффекта торможения алюминиевого диска рабочими потоками. При дальнейшей перегрузке отрицательная погрешность резко возрастает, что наглядно иллюстрируется нагрузочной характеристикой счетчика, приведенной на рисунке 7.6.

Относительная погрешность счетчика определяется выражением

g = [(Сд – Сн)/Сн]·100 %,

где Сд = РТ/N –действительная постоянная счетчика, определяемая по данным опыта;

Сн = (3600·1000)/2500 – номинальная постоянная, определяемая по паспортным данным испытуемого счетчика.

Рисунок 7.6

Порог чувствительности П счетчика – чувствительность срабатывания вращающего элемента счетчика. Для определения П необходимо собрать схему (рисунок 7.

4), включив в токовую цепь электромагнитный миллиамперметр (на 20–50 мА), ограничивающее ток сопротивление R на 5 кОм и
высокоомный реостат R1 (3–5 кОм). Подать в схему номинальное напряжение.

Совет

Постепенно уменьшая сопротивление реостата, следует зафиксировать тот минимальный ток, при котором диск счетчика делает один оборот за время порядка 2-х минут. Порог чувствительности счетчика подсчитывается как

П = (Imin/Iн)100 %.

Вследствие трения, порог чувствительности электромеханического счетчика не может быть однозначным. Поэтому учитывают лишь верхнюю границу возможных значений порога чувствительности.

Самоход счетчика приводит к завышенным показаниям. Нежелательное явление самохода возникает под действием компенсатора трения. Противосамоходное устройство состоит из ферромагнитного флажка и пластины.

Пластину прикрепляют на магнитопроводе обмотки напряжения, а флажок – на оси подвижной системы. Под действием сил притяжения, возникающих между флажком и пластиной, диск счетчика останавливается.

Устранение самохода производят путем подгибания или отгибания флажка, установленного вблизи пластины.

Для выяснения самохода индукционного счетчика необходимо в схеме (рисунок 7.4) ключем S1 разорвать токовую цепь, установить напряжение порядка 80 % от номинального и постепенно увеличить его до 110 %. Если диск счетчика сделает более одного оборота, самоход есть.

Контрольные вопросы

1 Назовите методы поверки индукционных счетчиков активной энергии.

2 Объясните назначение, принцип действия и основные технические характеристики индукционного счетчика активной энергии.

3 Дайте определение класса точности счетчика.

4 Что называется нагрузочной характеристикой индукционного счетчика?

5 Как определить порог чувствительности счетчика?

6 Как определить действительную и номинальную постоянные счетчика?

7 Поясните назначение основных деталей индукционного счетчика.

8 Каковы причины самохода и каким образом его можно устранить?

9 Чем отличается индукционный счетчик от электродинамического ваттметра?

10 Запишите формулу вращающего момента счетчика и проанализируйте ее.

11 Выведите формулу, подтверждающую, что расход измеряемой электроэнергии пропорционален числу оборотов диска счетчика.

12 Запишите формулу определения относительной погрешности счетчика.

Литература

[1, С. 144-146, 166-170; 4, С. 91-96]

ЛАБОРАТОРНАЯ РАБОТА № 8

ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК МАГНИТНЫХ МАТЕРИАЛОВ

Часть I



Источник: https://infopedia.su/13x282c.html

Принцип работы индукционного счетчика

Счетчик представляет собой индукционную систему и является интегрирующим во времени электроизмерительным прибором. Принцип дейст­вия — взаимодействие магнитных полей токов, протека­ющих по двум обмоткам, с магнитным полем тока, индуктируемого в алюминиевом диске, находящемся между этими обмотками.

Рисунок. (а) Измерительный механизм индукционной системы.

1 – токовая катушка;

2 – катушка напряжения;

3 – алюминиевый диск;

4 – постоянный магнит;

Рисунок (б). Устройство электросчетчика.

1 – зажимы для подключения электроприемников;

2 – зажимы для подключения к сети;

3 – токовая обмотка;

4 – постоянный магнит;

5 – червячный винт;

6 – обмотка напряжения;

8 – алюминиевый диск;

Основными узлами эл.счетчика являются катушки напряжения и тока, алюминиевый диск 3, укрепленный на оси, опоры оси — подпятник и подшипник, постоянный магнит. С осью связан при помощи зубчатой передачи счетный механизм (рисунок ниже).

Электромагнит 1 содержит Ш — образный магнитопровод, на среднем стержне которого расположена многовитковая обмотка из тонкого провода, включенная на напряжение сети U параллельно нагрузке Н.

Обратите внимание

При номинальном напряжении 220 В обмотка катушки напряжения имеет обычно 8-12 тысяч витков провода диаметром 0,1 — 0,15 мм. Токовая катушка через которую протекает полный ток нагрузки имеет обычно количество ампер-витков в пределах 70 — 150, т.е.

при номинальном токе 5 А обмотка содержит от 14 до 30 витков. Комплекс деталей, состоящий из последовательной (токовой) и параллельной (напряжения) обмоток с их магнитопроводами, называется вращающим элементом счетчика

1 – ось измерительного механизма;

2 – система зубчатых передач;

3 – обоймы счетного механизма

Ток, протекающий по обмотке напряжения создает общий переменный магнитный поток цепи напряжения, небольшая часть которого (рабочий поток) пресекает алюминиевый диск находящийся в зазоре между обоими электромагнитами.

Большая часть магнитного потока цепи напряжения замыкается через шунты и боковые стержни магнитопровода (нерабочий поток), который разделяется на две части и необходим для создания требуемого угла сдвига фаз между магнитными потоками цепи напряжения и цепи нагрузки (токовой цепи).

Магнитный поток цепи напряжения прямо пропорционален приложенному напряжению (напряжению сети).

Ток нагрузки протекающий через токовую обмотку, создает переменный магнитный поток, который также пересекает алюминиевый диск и замыкается по магнитному шунту верхнего магнитопровода и частично через боковые стержни. Незначительная часть (нерабочий поток) замыкается через противополюс на пересекая диск. Так как магнитопровод токовой обмотки имеет U-образную конструкцию, то его магнитный поток пересекает диск дважды.

Токи протекающий по обмоткам напряжения и тока создают переменные магнитные потоки которые пересекают диск счетчика. Согласно закону электромагнитной индукции, переменные магнитные потоки обоих обмоток при пересечении диска, наводят в нем ЭДС, под действием которых в диске возникают соответствующие вихревые токи.

В результате взаимодействия магнитного потока обмотки напряжения и вихревого тока от магнитного потока токовой обмотки и с другой стороны магнитного потока токовой обмотки и вихревого тока от обмотки напряжения, возникает электромеханические силы, которые создают вращающий момент, действующий на диск.

Этот момент пропорционален произведению указанных магнитных потоков и синусу угла сдвига фаз между ними.

Важно

Постоянный магнит установленный в счетчике служит для создания тормозного момента в счетчике. Силовые линии магнитного поля этого магнита, пересекая диск, наводят в нем дополнительную ЭДС, пропорциональную частоте вращения диска.

Эта ЭДС в свою очередь вызывает протекание в диске вихревого тока, взаимодействие которого с потоком постоянного магнита приводит к возникновению электромеханической силы, направленной против движения диска, т.е. приводит к созданию тормозного момента.

Читайте также:  Как развести электропроводку по второму этажу в двухэтажном доме?

Регулировку тормозного момента, а следовательно частоты вращения диска производят путем перемещения постоянного магнита в радиальном направлении. При приближении магнита к центру диска, частота вращения уменьшается.

Copyright 2006. All Rights reserved

Устройство и принцип работы электросчетчика

Учет расхода потребляемой электрической энергии на объектах любой формы собственности осуществляется с помощью электросчетчиков. Правильный выбор прибора отражается на экономии электроэнергии, что является первостепенной задачей в настоящее время. Ни один объект не будет включен к сетям энергопоставляющих компаний без установки электросчетчика.

Правила его выбора, места установки и подключения регламентируются нормативно-технической документацией, среди которых ПУЭ занимает основное место. Каждый домовладелец оформляет договор на подключение к сетям, где модель счетчика должна быть обязательно указана.

Это необходимо для того, чтобы осуществлять поверку счетчика, периодичность которой для каждой модели устанавливается предприятием-изготовителем.

Счетчик для учета электроэнергии

Классификация

О течественные и зарубежные производители выпускают огромный ассортимент электросчетчиков. Разобраться поможет классификация устройств по следующим признакам:

  • принципу работы (индукционные и электронные);
  • количеству фаз или классу напряжения (одно,- и трехфазные);
  • способу подключения (напрямую и через измерительные трансформаторы);
  • количеству тарифов (одно-, двух,- и трехтарифные);
  • типу тарификатора (внешний и внутренний);
  • классу точности (0,2s; 0,2; 0,5s; 0,5; 1,0; 2,0; 2,5);
  • измеряемому току (базовый, стартовый и максимальный);
  • типу интерфейсов (импульсный, ИК порт, RS 232, RS 485, волоконно-оптическую линию связи, CAN, PLC-модем и GSM).

Устройство и принцип работы

Конструкция счетчика зависит от принципа его работы и осуществляемых функций. Индукционный однофазный счетчик используется в однофазных переменных сетях и состоит из следующих частей:

  • корпуса составного;
  • двух обмоток: токовой и напряжения;
  • двух магнитопроводов: обмотки тока и обмотки напряжения;
  • противополюса;
  • диска алюминиевого;
  • механизма червячного типа;
  • механизма счетного;
  • магнита постоянного, служащего для торможения диска;
  • оси, на которой закреплены счетный механизм, червячная передача и алюминиевый диск.

Схематическое устройство однофазного электросчетчика индукционного типа

Принцип работы устройства заключается в следующем. 2 электромагнита представляют измерительный механизм счетчика. Они расположены под углом 90° друг к другу. В магнитном поле этих электромагнитов находится диск, выполненный из алюминия.

Счетчик включается в работу путем подсоединения с электроприемниками токовой обмотки последовательно, а с электроприемниками напряжения – параллельно. При прохождении переменного тока по обмоткам в сердечниках возникают магнитные потоки переменной величины.

Они пронизывают диск, в результате чего индуцируют вихревые токи. При взаимодействии последних с магнитными потоками создается усилие, которое вращает диск. Он, в свою очередь, связан со счетным механизмом, который учитывает частоту вращения диска.

Цифры, расположенные на счетном механизме фиксируют расход электрической энергии.

При увеличении тока нагрузки возникает больший вращающий момент, что заставляет диск вращаться быстрее.

Принцип работы трехфазных индукционных счетчиков аналогичен выше описанному счетчику, с той лишь разницей, что их используют в трехфазных сетях переменного тока.

Вид спереди трехфазного индукционного электросчетчика со снятой крышкой

Вид сбоку со снятой задней частью корпуса трехфазного индукционного счетчика

С развитием электронных технологий появились счетчики учета расхода электроэнергии электронного типа. Принцип действия их довольно прост.

Специальный преобразователь входные аналоговые сигналы с датчиков тока и напряжения преобразует в цифровой импульсный код.

Он подается на микроконтроллер, который фиксирует количество потребляемой электроэнергии на дисплее изделия. Отсюда основными частями электронного счетчика являются:

  • кожух защитный;
  • трансформаторы измерительные тока и напряжения;
  • преобразователь;
  • микроконтроллера, являющиеся органом управления и передачи информации на дисплей;
  • колодка клеммная для подсоединения эл. проводов.

Работа однофазных и трехфазных электронных счетчиков осуществляется по одним и тем же законам, с той лишь разницей, что в 3-хфазном осуществляется суммирование величин каждого из трех каналов.

Структурная схема работы однофазного счетчика электронного типа

Из схемы видно, что трансформатор тока включен в разрыв фазного провода, а трансформатор напряжения подключен к нулю и фазе.

Совет

Сигналы величины тока и напряжения с помощью преобразователя преобразуются в мощность и частоту в цифровом виде, в дальнейшем микроконтроллер управляет оперативным запоминающим устройством (ОЗУ), электронным реле и дисплеем, на котором отражается цифровая информация, фиксирующая расход электроэнергии на подключенном к счетчику объекте. ОЗУ в некоторых моделях может играть роль передатчика информации, что дает возможность контролировать работу счетчика на расстоянии.

Электронные счетчики для замеров расхода электроэнергии в трехфазных схемах, могут работать как в трех,- так и четырехпроводных цепях. Устройства хранят информацию с привязкой ко времени. Показания можно снимать за определенный период времени и фиксировать следующие показатели:

  • активное потребление;
  • реактивное потребление;
  • действующие значения напряжения и тока;
  • частоту в каждой фазе.

Все это позволило создать многотарифные счетчики для подсчета потребления электроэнергии в разное время суток, по дням недели или сезонам.

Видео про счетчик

Из чего состоит и как работает счетчик потребления электроэнергии, расскажет видео ниже.

Разобравшись в устройстве электросчетчиков, с уверенностью можно сказать, что электронные аналоги намного лучше индукционных, они более точно отражают информацию, ее удобно считывать и просматривать, при необходимости дистанционно. Единственное преимущество индукционных счетчиков – это их цена, которая гораздо ниже, чем у электронных моделей.

Что нужно знать об индукционных счётчиках

Для учета электроэнергии в бытовых и производственных целях используются электросчётчики. Приборы учёта электроэнергии имеют два вида:

В статье будет рассмотрен такой прибор учёта, как индукционный электросчетчик.

Конструкция индукционного счётчика

В устройство индукционного прибора учёта заложены все катушки, одна из которых ток, а другая – напряжение. Катушка тока имеет последовательное подключение, а катушка напряжения – параллельное. С помощью этих катушек образуется электромагнитное поле. Катушка тока имеет пропорциональный по силе тока электромагнитный поток, а катушка напряжения – пропорционально сетевого напряжения.

Электромагнитный поток заставляет алюминиевый диск вращаться, что соединён с механизмом счёта зубчатой и червячной передачей, приводя в движение счётный механизм, которым обладает индукционный счётчик электроэнергии.

Как работает индукционный счётчик

Суть работы, по которой работают индукционные счетчики электроэнергии, основана на таком принципе, когда на движущуюся деталь в одно время воздействует крутящийся и затормаживающий момент. Данный момент имеет пропорцию величине учёта, момент торможения имеет пропорцию скорости раскрутки движущейся части. Состоит индукционный однофазный счетчик электроэнергии из нескольких элементов:

  • Катушки напряжения, что расположили на магнитопроводе;
  • Диск вращения из алюминия;
  • Передаточный механизм устройства учёта;
  • Катушки тока на магнитопроводе;
  • Постоянный магнит.

Сделана катушка из провода с большим сечением, что может выдерживать большую нагрузку. Витки на катушки имеются в небольших количествах, обычно 13-30 витков на катушке.

Распределены они в равномерном положении на двух стержнях магнитопровода, что имеет U форму и сделан из электротехнической стали. Сердцевина работает для определённой концентрации части магнитного потока, что пересекает счётный диск и вращает его.

Сердечник ещё понижает магнитное сопротивление, что создано обмоткой на магнитный поток.

Подсоединяется обмотка напряжения на фазу напряжения сети и всегда имеет работоспособное состояние, наравне с потребителем, из-за этого она имеет название параллельной цепи. Катушка напряжения требуется для производства магнитного потока, который будет пропорционален сетевому напряжению.

Она имеет определённые конструктивные особенности от катушки тока тем, что имеет больше витков, около 8000 – 12 000 и небольшим сечением проводника 0.1 – 0.15 мм2.

В большом количестве витки создают более высокое индуктивное сопротивление, чем имеет активное сопротивление обмотки, что является довольно важным для соблюдения правила сдвига 90°и даёт возможность уменьшит потребляемость электроэнергии, что приходится на однофазные счётчики.

Магнитный поток катушки тока и катушки напряжения, что проходят по диску, образуют в нём трансформационные токи, за счёт чего создаётся вращающийся момент. Чтобы создать противодействующий момент, что будет пропорционален скорости движения диска, используются постоянные тормозные магниты, чей магнитный поток пересекает крутящийся диск из электропроводящего материала.

Обратите внимание

Образующиеся в диске токи резания, всегда соблюдают скорость вращения пропорционально диска. То есть когда счётчик работает, он соблюдаёт определённую закономерность, что чем большая мощность потребления, тем более быстро будет происходить вращение диска по его оси.

Момент противодействия, что образуется при взаимодействии магнитного потока с дисковым током, всегда будет пропорционален скорости вращения. Когда диск проходит волну, что создаёт тормозной магнит, на нём наводится ЭДС резания, что идёт от середины диска в его окружности.

Потоковая сила тормозного магнита при взаимодействии с током диска имеет прямую пропорциональность ЭДС резания и имеет направление на остановку диска. Замедляющий процесс зависит от дальность магнита до центра диска, определяется как произведение плеча на значение силы.

То есть регулировка быстроты кручения происходит путём перемещения магнита, что позволяет настроить его в зависимости от передаточного числа.

Для более точной настройки на счётчиках используют специальные устройства для регулировки. Данные приборы – это короткозамкнутые медные, алюминиевые витки, или обмотка из витков провода из меди, что замкнут на настраиваемое сопротивление.

Плюсы и минусы индукционных счётчиков

Приборы учёта электроэнергии бывают только однотарифными, потому как в них отсутствует система дистанционного снятия показаний в автоматическом режиме, то есть счётчик не может работать по дневному и ночному тарифу. Это существенный недостаток, которым обладает индукционный электросчетчик, так как оплата за ток будет намного больше, чем у электронных.

Индукционные счётчики имеют ряд своих преимуществ и недостатков. Из преимуществ можно отметить:

  1. Обладают относительно низкой ценой.
  2. Высокий уровень надёжности.
  3. Не зависимы к перепадам электроэнергии.
  4. Имеют длительный срок эксплуатации.
  5. Подходит для таких манипуляций, как отмотка показаний и остановка счётчика.
  6. Продаётся в большинстве точек по продаже электротоваров.

Однако на фоне этого имеются и негативные моменты, а в частности:

  1. Низкий класс точности.
  2. Большой процент погрешности на маленьких нагрузках.
  3. Можно использовать всего один тариф.

Производители индукционных счётчиков работают над улучшением своей продукции, увеличивая класс точности и срок службы, но конструкция, которой обладают индукционные электросчетчики, не позволяет существенно улучшить эти показатели. Именно из-за этого пришли на смену электронные приборы учёта, которые более стабильны и обладают множеством положительных моментов.

Источники: http://www.energosbit.net/odnof.html, http://elquanta.ru/schetchiki/ustrojjstvo-princip-ehlektroschetchika.html, http://amperof.ru/elektroenergiya/schetchik/ob-induktsionnyh.html

Источник: http://electricremont.ru/printsip-raboty-induktsionnogo-schetchika.html

Ссылка на основную публикацию
Adblock
detector