Онлайн расчет реактивного сопротивления

Онлайн расчет реактивного сопротивления

Сопротивлением называется свойство материала препятствовать протеканию электрического тока. Оно бывает активным (у резисторов) и реактивным (у конденсаторов и индуктивностей).

Они отличаются тем, что первое преобразует энергию в тепло, а принцип действия реактивной энергии заключается в препятствии протеканию тока в результате передачи энергии электрического (в емкостях) или магнитного поля (в индуктивности) и наблюдается только в цепях переменного тока.

В результате этих взаимодействий происходит отклонение фазы тока от фазы напряжения, пропорциональное величине реактивного сопротивления. При этом в емкостных цепях ток опережает напряжение, а в индуктивных наоборот.

Обратите внимание

Данное явление используют при питании трёхфазных двигателей от однофазной сети (в т. ч. конденсаторных), а также при питании газоразрядных ламп (дросселя и ЭмПРА).

Эта величина зависит от частоты питающего напряжение, что является следствием законов коммутации и величины ЭДС-самоиндукции на индуктивности.

Поговорим о том, как рассчитать реактивное или емкостное сопротивление конденсатора. Чтобы выполнить расчет вручную воспользуйтесь формулой:

Если её рассмотреть подробнее, то сопротивление обратно пропорционально w и ёмкости C. В свою очередь угловая частота w (измеряется в радианах или градусах в секунду – рад/с) равна произведению 2пf, где f – циклическая частота (раз в секунду или Гц).

Для расчета сопротивления конденсатора с помощью онлайн калькулятора вам нужно:

  1. Выбрать размерности для вводных данных и результатов, это важно, чтобы не допустить ошибки при дальнейшем их использовании.
  2. Ввести известные данные.
  3. Нажать кнопку «вычислить» напротив искомой величины.

При этом наш калькулятор позволяет вычислить онлайн каждую из составляющих формулы в зависимости от того, какие данные введены, а это очень удобно при расчётах электрической схемы или контура.

Также следует рассказать о том, как выполняется расчёт реактивного сопротивления дросселя. Для катушек индуктивности всех видов справедлива такая формула:

Тогда итоговое значение возрастает прямо пропорционально скорости изменения тока и величины индуктивности.

Для использования в расчётах онлайн калькулятора по аналогии с предыдущим нужно:

  1. Выбрать размерности.
  2. Ввести известные данные.

После этого будет произведено вычисление нужного параметра электрической цепи. Надеемся, предоставленный нами онлайн-калькулятор для расчета реактивного сопротивления был для вас полезным!

Источник: https://samelectrik.ru/reaktivnoe-soprotivlenie.html

Конвертер величин

Отметим, что величина импеданса идеального конденсатора равна его реактивному сопротивлению. Однако это не идентичные величины, так как между током и напряжением в емкостной цепи существует фазовый сдвиг. Для расчетов используются указанная ниже формула:

Здесь

XC — реактивное сопротивление конденсатора в омах (Ом) ,

ZLC — импеданс конденсатора в омах (Ом),

ω = 2πf — угловая частота в рад/с,

j — мнимая единица.

f — частота в герцах (Гц),

С — емкость в фарадах (Ф), и

Для расчета выберите единицы измерения и введите емкость и частоту. Импеданс конденсатора будет показан в омах.

График зависимости реактивного сопротивления конденсатора XC и текущего через него тока I от частоты f для нескольких величин емкости показывает обратную пропорциональную зависимость от частоты реактивного сопротивления

Конденсатор представляет собой пассивный электрический элемент с двумя выводами, состоящий, в основном, из двух электрических проводников, часто в форме тонких металлических пластин, разделенных диэлектриком, например, пластмассовой пленкой, керамикой, бумагой или даже воздухом. Конденсаторы используются для хранения энергии в форме электрического заряда.

Если незаряженный конденсатор подключить к источнику постоянного напряжения, он заряжается до приложенного напряжения и его зарядный ток экспоненциально уменьшается от максимального значения в начальной точке заряда до нуля. В то же время, напряжение на конденсаторе увеличивается до напряжения источника постоянного тока.

Таким образом, когда напряжение на конденсаторе становится максимальным, ток через него достигает минимума. Скорость изменения тока определяется постоянной времени цепи, в которую включен конденсатор. Полностью заряженный конденсатор блокирует ток и действует как временный накопитель энергии.

Идеальный конденсатор поддерживает полный заряд в течение неограниченно долгого времени даже в том случае, если отключить источник постоянного напряжения. Однако в реальной жизни конденсаторы, особенно электролитические, не могут хранить энергию постоянно, так как у них имеется относительно низкое сопротивление утечки и, следовательно, большой ток утечки.

Если к конденсатору приложить синусоидальное напряжение, он заряжается сначала в одном направлении, а затем в противоположном. Полярность его заряда изменяется со скоростью изменения переменного напряжения.

Как уже упоминалось выше, когда напряжение достигает максимума, ток становится минимальным и когда напряжение достигает минимума, ток достигает максимума.

Ток через конденсатор пропорционален скорости изменения напряжения, причем ток максимален, когда напряжение изменяется быстрее всего, а это происходит, когда синусоида напряжения пересекает нулевую точку. На рисунке показан график напряжения на конденсаторе, заряда на нем и протекающего через него тока выглядит.

Важно

В чисто емкостной цепи величина тока зависит от скорости изменения напряжения. Ток заряжает конденсатор и когда ток медленно понижается до нуля, конденсатор полностью заряжен и напряжение на нем достигает максимума. VC — напряжение, QC — заряд, IC — ток, φ = –90° = –π/2 — фазовый сдвиг.

1 — конденсатор начинает заряжаться, ток достиг положительного максимума, скорость его изменения нулевая и напряжение на конденсаторе, а также его заряд — нулевые; 2 — конденсатор полностью заряжен, ток через него равен нулю, скорость его изменения в этот момент максимальна, а напряжение на конденсаторе и его заряд в этот момент максимальны и положительны; 3 — конденсатор заряжается в противоположном направлении, ток через него достиг отрицательного максимума, скорость его изменения нулевая, напряжение и заряд конденсатора также нулевые; 4 — конденсатор полностью заряжен, ток через него нулевой, скорость его изменения максимальна, а заряд и напряжение на конденсаторе достигли своих отрицательных максимумов

Как мы видим, напряжение на конденсаторе отстает от тока в нем по времени и фазе на 90°, так ток должен течь достаточно долго, чтобы на конденсаторе возник заряд и, соответственно, возросло напряжение. Можно также сказать, что ток опережает напряжение.

Величина этого опережения зависит от соотношения величин реактивного сопротивления и активного сопротивления в цепи. Если сопротивления в цепи нет, то отставание (опережение) будет на 90° (ток нулевой, когда напряжение максимально).

Этот угол называется фазовым сдвигом.

Аналогичное явление можно наблюдать и в природе. Сравните: Солнце светит сильнее всего в астрономический полдень (солнечный свет — напряжение), однако самая жаркая часть дня обычно бывает через несколько часов после полудня (температура — ток). Или другой пример.

День зимнего солнцестояния в северном полушарии (самый короткий день) — в конце декабря, однако самые холодные месяцы еще впереди. В зависимости от того, где вы живете, это будет январь или февраль. Вспомните поговорку «Солнце — на лето, зима — на мороз». Это как раз о поведении емкости, только в природной аналогии.

Читайте также:  Можно ли заменить провода в люстре?

Такой сезонный «сдвиг фаз» или отставание вызван поглощением энергии Солнца огромными массами воды в океанах. Они отдадут эту запасенную энергию, но позже — точно так же, как это делают конденсаторы.

День зимнего солнцестояния

Рассчитанный этим калькулятором импеданс представляет собой меру сопротивления конденсатора пропускаемому через него сигналу на определенной частоте. Емкостное реактивное сопротивление обратно пропорционально частоте приложенного переменного напряжения.

Совет

Приведенные выше формула и график показывают, что реактивное сопротивление конденсатора XС мало при высоких частотах и велико при низких частотах (катушки индуктивности ведут себя с точностью до наоборот).

При нулевой частоте (при постоянном напряжении) емкостное реактивное сопротивление становится бесконечно большим и прерывает протекающий ток.

С другой стороны, при очень высоких частотах конденсатор проводит очень хорошо — отсюда правило, которое мы выучили в школе: конденсаторы не пропускают постоянный ток и пропускают переменный. Если частота очень высокая, конденсаторы пропускают сигнал очень хорошо.

Импеданс измеряется в омах, так же, как и сопротивление. Импеданс мешает прохождению электрического тока так же, как и сопротивление, и показывает как сильно конденсатор противодействует прохождению тока через него.

Но тогда возникает вопрос: в чем же разница между импедансом и сопротивлением? А разница заключается в зависимости импеданса от частоты приложенного сигнала. Сопротивление от частоты не зависит, а импеданс конденсаторов от частоты зависит.

С увеличением частоты импеданс конденсатора уменьшается и наоборот.

Этот калькулятор предназначен для расчета импеданса идеальных конденсаторов. Реальные конденсаторы всегда имеют некоторую индуктивность и сопротивление. Для расчета импеданса реальных конденсаторов пользуйтесь калькулятором импеданса RLС-цепей.

Конденсаторы советского производства, выпущенные в конце 60-х гг. прошлого века

Источник: https://www.translatorscafe.com/unit-converter/ru/calculator/capacitor-impedance/

Сопротивление конденсатора

Господа, сегодняшнюю статью можно считать в некотором роде продолжением предыдущей. Сначала я даже хотел поместить весь этот материал в одну статью. Но его получилось довольно много, на горизонте были новые проекты, и я в итоге разделил его на две.

Итак, сегодня мы поговорим про сопротивление конденсатора переменному току.

Мы получим выражение, по которому можно будет рассчитать, чему равно сопротивление любого конденсатора, включенного в цепь с переменным током, а в конце статьи рассмотрим несколько примеров такого расчета.

Обратите внимание

Сразу оговорюсь про одну важную вещь. Вообще говоря, реальный конденсатор обладает помимо емкостного сопротивления еще резистивным и индуктивным.

На практике все это надо обязательно учитывать, потому что возможны ситуации (обычно связанные с ростом частоты сигнала), когда конденсатор перестает быть конденсатором и превращается… в некое подобие катушки индуктивности. При проектировании схем этот момент обязательно надо иметь в виду.

Согласитесь, господа, крайне неприятно поставить в схему конденсатор и потом столкнуться с тем, что из-за высокой частоты он ведет себя и не как конденсатор вовсе, а как самый настоящий дроссель. Это, безусловно, очень важная тема, но сегодня речь пойдет не о ней.

В сегодняшней статье мы будем говорить непосредственно про емкостное сопротивление конденсатора. То есть мы будем считать его идеальным, без каких бы то ни было паразитных параметров вроде индуктивности или активного сопротивления.

Давайте представим, что у нас есть конденсатор, который включен в цепь с переменным током. В цепи больше нет никаких компонентов, только один конденсатор и все (рисунок 1).

Рисунок 1 – Конденсатор в цепи переменного тока

К его обкладкам приложено некоторое переменное напряжение U(t), и через него течет некоторый ток I(t). Зная одно, можно без проблем найти другое.

Для этого надо всего лишь вспомнить прошлую статью про конденсатор в цепи переменного тока, там мы про все это довольно подробно говорили.

Будем полагать, что ток через конденсатор изменяется по синусоидальному закону вот так

В прошлой статье мы пришли к выводу, что если ток изменятся вот по такому закону, то напряжение на конденсаторе должно меняться следующим образом

Пока что ничего нового мы не записали, это все дословное повторение выкладок из предыдущей статьи. А сейчас самое время их немного преобразовать, придать им чуть другой облик.

Если говорить конкретно, то нужно перейти к комплексному представлению сигналов! Помните, на эту тему была отдельная статья? В ней я говорил, что она нужна для понимания некоторых моментов в дальнейших статьях. Вот как раз и наступил тот момент, когда пора вспомнить все эти хитрые мнимые единицы.

Важно

Если говорить конкретно, то сейчас нам потребуется показательная запись комплексного числа. Как мы помним из статьи про комплексные числа в электротехнике, если у нас есть синусоидальный сигнал вида

то его можно представить в показательной форме вот так

Почему это так, откуда взялось, что здесь какая буковка значит – обо всем уже подробно говорили. Для повторения можно перейти по ссылке и еще раз со всем ознакомиться.

Давайте-ка теперь применим это комплексное представление для нашей формулы напряжения на конденсаторе. Получим что-то типа такого

Теперь, господа, я хотел бы вам рассказать еще про один интересный момент, который, наверное, следовало бы описать в статье про комплексные числа в электротехнике. Однако тогда я про него как-то позабыл, поэтому давайте рассмотрим его сейчас.

Давайте представим, что t=0. Это приведет к исключению из расчетов времени и и частоты, и мы переходим к так называемым комплексным амплитудам сигнала. Безусловно, это не значит, что сигнал из переменного становится постоянным.

Нет, он все так же продолжает изменяться по синусу с той же самой частотой. Но бывают моменты, когда частота нам не очень важна, и тогда лучше от нее избавиться и работать только с амплитудой сигнала. Сейчас как раз такой момент.

Поэтому полагаем t=0 и получаем комплексную амплитуду напряжения

Давайте раскроем скобки в экспоненте и воспользуемся правилами работы с показательными функциями.

Совет

Итак, у нас имеется три множителя. Будем разбираться со всеми по порядку. Объединим первые два и запишем выражение следующего вида

Что мы вообще такое записали? Правильно, комплексную амплитуду тока через конденсатор. Теперь выражение для комплексной амплитуды напряжения принимает вид

Результат, к которому мы стремимся, уже близок, но остается еще один не очень приятный множитель с экспонентой. Как с ним быть? А, оказывается, очень просто. И снова нам на помощь придет статья по комплексным числам в электротехнике, не зря ж я ее писал. Давайте преобразуем этот множитель, воспользовавшись формулой Эйлера:

Да, вся эта хитрая экспонента с комплексными числами в показателе превращается всего лишь в мнимую единичку, перед которой стоит знак минус. Согласен, возможно, осознать это не так просто, но тем не менее математика говорит, что это так. Поэтому результирующая формула у нас принимает вид

Давайте выразим из этой формулы ток и приведем выражение к виду, соответствующему закону Ома. Получим

Как мы помним из статьи про закон Ома, у нас ток равнялся напряжению, деленному на сопротивление.

Читайте также:  Как узнать, кому принадлежит столб лэп?

Так вот, здесь практически то же самое! Ну, за исключением того, что у нас ток и напряжение – переменные и представлены через комплексные амплитуды. Кроме того, не забываем, что ток течет у нас через конденсатор.

Поэтому, выражение, которое стоит в знаменателе, можно рассматривать как емкостное сопротивление конденсатора переменному току:

Обратите внимание

Да, выражение для сопротивления конденсатора имеет вот такой вот вид. Оно, как вы можете заметить, комплексное. Об этом свидетельствует буковка j в знаменателе дроби.

А что значит эта комплексность? На что она влияет и что показывает? А показывает она, господа, исключительно сдвиг фаз в 90 градусов между током и напряжением на конденсаторе. А именно, ток на 90 градусов опережает напряжение. Этот вывод не является для нас новостью, про все это было подробно рассказано в прошлой статье.

Чтобы это лучше осознать, надо теперь мысленно пройтись от полученной формулы вверх к тому моменту, где у нас это j возникло. В процессе подъема вы увидите, что мнимая единица j возникло из формулы Эйлера из-за того, что там был компонент. Формула Эйлера у нас возникла из комплексного представления синусоиды.

А в исходной синусоиде как раз был заложен сдвиг фазы в 90 градусов тока относительно напряжения. Как-то так. Вроде все логично и ничего лишнего не возникло.

Теперь может возникнуть два совершенно логичных вопроса: как работать с таким представлением и в чем его выгода? Да и вообще, пока лишь какие-то дико абстрактные буковки и нифига не ясно, как взять и оценить сопротивление какого-нибудь конкретно конденсатора, который мы купили в магазине и воткнули в схему. Давайте разбираться постепенно.

Как мы уже говорили, буковка j в знаменателе говорит нам лишь о сдвиге фаз тока и напряжения. Но она не влияет на амплитуды тока и напряжения. Соответственно, если сдвиг фаз нас не интересует, то можно исключить эту буковку из рассмотрения и получить более простое выражение абсолютно без всяких комплексностей:

Согласитесь, жить стало чуточку легче. Это выражение позволяет рассчитать сопротивление конденсатора для конкретной емкость и частоты сигнала. Заметьте, господа, интересный факт. Сопротивление конденсатора, оказывается, зависит не только от самого конденсатора (а именно его емкости), но и от частоты протекающего тока.

Если вспомнить обычные резисторы, то в них у нас сопротивление зависело только от самого резистора, материала, формы и всего такого прочего, но не зависело от частоты (разумеется, мы говорим сейчас про идеальные резисторы, без всяких паразитных параметров). Здесь все по-другому.

Один и тот же конденсатор на разной частоте будет иметь разное сопротивление и через него будет течь ток разной амплитуды при одной и той же амплитуде напряжения.

Что еще мы можем сказать, глядя на эту формулу? Например, то, что чем больше частота сигнала, тем меньше для него сопротивление конденсатора. И чем больше емкость конденсатора, тем меньше его сопротивление переменному току.

По аналогии с резисторами, сопротивление конденсаторов измеряется все так же в Омах. Однако всегда следует помнить, что это немного другое сопротивление, его называют реактивным. И другое оно в первую очередь из-за того самого пресловутого j в знаменателе, то есть из-за сдвига фазы.

У «обычных» (которые называют активными) Омов такого сдвига нет, там напряжение четко совпадает по фазе с током. Давайте построим график зависимости сопротивления конденсатора от частоты. Для определенности емкость конденсатора возьмем фиксированной, скажем, 1 мкФ. График представлен на рисунке 2.

Рисунок 2 (кликабельно) – Зависимость сопротивления конденсатора от частоты

Важно

На рисунке 2 мы видим, что сопротивление конденсатора переменному току убывает по закону гиперболы.

При стремлении частоты к нулю (то есть фактически при стремлении переменного току к постоянному) сопротивление конденсатора стремится к бесконечности.

Это и логично: мы все помним, что для постоянного тока конденсатор фактически представляет собой разрыв цепи. На практике оно, конечно, не бесконечно, а ограничено сопротивлением утечки конденсатора.

Тем не менее, оно все равно очень велико и часто его и считают бесконечно большим.

При стремлении частоты к бесконечности, сопротивление конденсатора стремится к нулю. Это все в теории, конечно.

На практике реальный конденсатор обладает рядом паразитных параметров (в частности, паразитная индуктивности и сопротивление утечки), из-за чего сопротивление уменьшается только лишь до некоторой определенной частоты, а потом начинает наоборот расти. Но об этом более подробно в другой раз.

Есть еще один вопрос, который хотелось бы обговорить, прежде чем начинать рассмотрение примеров. Зачем вообще писать букву j в знаменателе сопротивления? Не достаточно ли просто всегда помнить про сдвиг фаз, а в записи использовать числа без этой мнимой единицы? Оказывается, нет.

Представим себе цепь, где одновременно присутствуют резистор и конденсатор. Скажем, они соединены последовательно. И вот тут-то как раз мнимая единичка рядом с емкостью не позволит просто так взять и сложить активное и реактивное сопротивление в одно действительное число.

Совет

Общее сопротивление такой цепочки будет комплексным, причем состоящим как из действительной части, так и из мнимой. Действительная часть будет обусловлена резистором (активными сопротивлением), а мнимая – емкостью (реактивным сопротивлением).

Впрочем, это все тема для другой статьи, сейчас не будем в это углубляться. Давайте лучше перейдем к примерам.

Пусть у нас есть конденсатор емкостью, скажем C=1 мкФ. Требуется определить его сопротивление на частоте f1=50 Гц и на частоте f2=1 кГц. Кроме того, следует определить амплитуду тока с учетом того, что амплитуда приложенного к конденсатору напряжения равна Um=50 В. Ну и построить графики напряжения и тока.

Собственно, задачка эта элементарная. Подставляем циферки в формулу для сопротивления и получаем для частоты f1=50 Гц сопротивление, равное

А для частоты f2=1 кГц сопротивление будет

По закону Ома находим величину амплитуды тока для частоты f1=50 Гц

Аналогично для второй частоты f2=1 кГц

Теперь мы легко можем записать законы изменения тока и напряжения, а также построить графики для этих двух случаев. Полагаем, что напряжение у нас изменяется по закону синуса для первой частоты f1=50 Гц следующим образом

А для второй частоты f2=1 кГц вот так

Дальше мы помним, что ток в конденсаторе опережает напряжение на. Поэтому с учетом этого можем записать закон изменения тока через конденсаторы для первой частоты f1=50 Гц

Читайте также:  Можно ли сделать дизельный генератор из электродвигателя и дизельного двигателя?

и для частоты f2=1 кГц

Графики тока и напряжения для частоты f1=50 Гц представлены на рисунке 3

Рисунок 3 (кликабельно) – Напряжение на конденсаторе и ток через конденсаторе, f1=50 Гц

Обратите внимание

Графики тока и напряжения для частоты f2=1 кГц представлены на рисунке 4

Рисунок 4 (кликабельно) – Напряжение на конденсаторе и ток через конденсаторе, f2=1 кГц

Итак, господа, мы сегодня познакомились с таким понятием, как сопротивление конденсатора переменному току, научились его считать и закрепили полученные знания парочкой примеров. На сегодня все. Спасибо что прочитали, всем огромной удачи и пока!

Источник: http://myelectronix.ru/peremennyy-tok/63-soprotivlenie-kondensatora

Онлайн калькулятор – закон Ома (ток, напряжение, сопротивление) + Мощность :: АвтоМотоГараж

Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему.

Данная статья и калькулятор в ней позволит упростить этот подбор и ускорить процесс реализации задуманного. Также в конце статьи приведу несколько методик для запоминания основной формулы закона Ома. Эта информация будет полезна начинающим.

Формула хоть и простая, но иногда есть замешательство, где и какой параметр должен стоять, особенно это бывает поначалу.

В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.

Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению

Так записывается основная формула:

Путем преобразования основной формулы можно найти и другие две величины:

Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

Формула мгновенной электрической мощности:

Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины.

Важно

Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать.

Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.

Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.

Первая – мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.

Вторая – метод треугольника. Его ещё называют магический треугольник закона Ома.

Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.

Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.

Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.

Этот круг также, как и треугольник можно назвать магическим.

Источник: http://automotogarage.ru/equipment/electrical/ohms_law/

Реактивное сопротивление XL и XC

Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Реактивное сопротивление катушки индуктивности

При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении – положительна и препятствует его убыванию, оказывая таким образом сопротивление изменению тока на протяжении всего периода.

В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U, подавляющее ЭДС, равное ей по амплитуде и противоположное по знаку.

При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения, что образует расхождение во времени тока и напряжения в 1/4 периода.

Совет

Если приложить к выводам катушки индуктивности напряжение U, ток не может начаться мгновенно по причине противодействия ЭДС, равного -U, поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε), которая пропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt).
Отсюда выразим синусоидальный ток.

Интегралом функции sin(t) будет -соs(t), либо равная ей функция sin(t-π/2).
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.

В результате получим выражение мгновенного значения токасо сдвигом от функции напряжения на угол π/2 (90°).
Для среднеквадратичных значений U и I в таком случае можно записать.

В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома, где в знаменателе вместо R выражение ωL, которое и является реактивным сопротивлением:

Реактивное сопротивлениие индуктивностей называют индуктивным.

Реактивное сопротивление конденсатора

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда – накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное. Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю. Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току, обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U, мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума. Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt).
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2).
Тогда для синусоидального напряжения u = Uampsin(ωt) запишем выражение мгновенного значения тока следующим образом:

i = UampωCsin(ωt+π/2).

Отсюда выразим соотношение среднеквадратичных значений.

Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:

Реактивное сопротивление конденсатора называют ёмкостным.

Предлагаем Вам рассмотреть непосредственно связанные с данным материалом статьи:
Что такое коэффициент мощности – Cos(φ)?

Источник: https://www.consultelectro.ru/articles/XL-XC

Ссылка на основную публикацию
Adblock
detector