Пускатель и контактор. Выбор и характеристики
Пускатели применяют для подключения мощной нагрузки — электродвигателей, ТЭНов, мощных ламп, и др. Область применения — там, где реле уже не справляются, а полупроводниковые силовые элементы либо малы по току, либо дороги.
Контакторы (пускатели) электромагнитные
Следует внести немного порядка в терминологию. Часто путают пускатели и контакторы. Для некоторых это одно и то же, а некоторые говорят, что контактор — это просто большой мощный пускатель. Но насколько мощный — никто толком объяснить не может…
Раньше, во времена СССР, так оно и было. Теперь пускатели, которые выпускались или разрабатывались в те времена, так и называют пускателями (например, ПМЛ, который выпускается до сих пор на Украине), а новые и зарубежные модели называют контакторами.
Одни и те же устройства электрики называют пускателями, а продавцы — контакторами. Честно говоря, и мне привычней говорить именно пускатели.
Чем отличается контактор от пускателя?
На самом деле контактор — это устройство, состоящее только из электромагнитной катушки и контактов. При подаче напряжения на катушку контакты замыкаются (или размыкаются). Контактор не содержит приспособлений для защиты, фиксации, коммутации, индикации, и др.
Пускатель — это устройство, содержащее в себе контактор как главный составляющий элемент. Кроме того, пускатель как правило содержит тепловое реле для защиты от перегрузки по току, кнопки ПУСК и СТОП, индикацию, может быть заключен в корпус, иметь автоматический выключатель для защиты от КЗ.
Иначе говоря, пускатель служит для пуска (включения) различных потребителей электроэнергии.
Характеристики и виды пускателей по характеристикам
Перед тем, как выбрать контактор, нужно определиться с нагрузкой, и выбор делать исходя прежде всего мощности нагрузки. Параметры контакторов можно уточнить на сайтах производителей или у торгующих организаций, а здесь мы приведем и рассмотрим самые важные. Основные параметры (ток, мощность нагрузки) обычно указывают на корпусе пускателя.
Величина (условный габарит) пускателя (контактора)
Самый главный параметр, величина характеризует условно мощность и габариты пускателя. Существуют такие величины пускателей:
- нулевая величина — на максимальный ток до 6 А (через каждый рабочий контакт)
- первая — на максимальный ток до 9 — 18 А (в зависимости от исполнения контактов)
- пускатель 2 величины — до 25 — 32 А
- пускатель 3 величины — до 40 — 50 А
- пускатель 4 величины — до 65 — 95 А
- пускатель 5 величины — до 100 — 160 А
- шестая величина — от 160 А и выше
Имеется ввиду ток по категории применения АС-3 (для индуктивной нагрузки), для категории АС-1 (резистивная или малоиндуктивная нагрузка — например, ТЭНы) максимальный ток для того же пускателя будет в полтора — два раза выше. От величины пускателя зависит, какую мощность он может коммутировать (трехфазная цепь 380 В, индуктивная нагрузка)
- 1 — до 2,2 — 7,5 кВт
- 2 — до 11 — 15 кВт
- 3 — до 18 — 22 кВт
- 4 — до 30 — 45 кВт
Сразу надо сказать, что эта мощность — действительно максимальная, реально надо смотреть на величину тока конкретного пускателя (как правило, вторая и третья цифра в названии).
Величина пускателя указывается в названии первой цифрой.
При превышении тока или токе, близком к максимальному, количество срабатываний (надежность) резко уменьшается, поэтому пускатель надо выбирать с запасом по мощности.
Количество контактов (полюсов)
В основном выпускаются контакторы с тремя рабочими контактами (для коммутации) и одним дополнительным. Дополнительный, или блокировочный контакт нужен для блокировки, или «самопитания», чтобы зафиксировать контактор во включенном состоянии при использовании стандартной схемы включения. Дополнительные контакты бывают нормально разомкнутые (чаще всего используются) и нормально замкнутые.
Для увеличения количества дополнительных контактов используют контактные приставки, применение которых существенно расширяет круг схемотехнических решений. В СССР такие дополнительные приставки назывались ПКИ, сейчас в продаже есть и другие модели, но суть одна.
Дополнительные контактные приставки ПКИ, и др.
Максимальный ток дополнительных контактов, как правило, равен (в пускателях первой и второй величин) или меньше максимального тока основных контактов. Существуют также дополнительные контакты (приставки) выдержки времени ПВЛ, в которых контакты включаются или выключаются через время задержки.
Напряжение электромагнитной катушки контакторов
Электромагнитные катушки контакторов, как правило, выпускаются на следующие напряжения: 24, 36, 110, 230, 380 Вольт. В пускателях большой величины используются катушки бОльшей мощности. Катушки продаются и отдельно, и её можно легко заменить в контакторе, если нужна другая величина напряжения.
Как правило, при наличии нулевого проводника целесообразно применять катушки контактора на напряжение 220 В, а при его отсутствии (чисто трехфазные потребители) — катушки на 380 В.
Источник: http://stavelectro.com/221/566/
Как выбрать контактор для электродвигателя с частыми пусками
Выбор контактора для электродвигателей с частыми пусками отличается от выбора для обычных силовых соединений. Прежде всего необходимо обратить внимание на категории применения, допустимую частоту включения, механическую и коммутационную износостойкость.
В связи с тем, что у каждого электродвигателя собственный характер работы, данные параметры подбираются индивидуально для каждой модели.
Категории применения
Первое, на что нужно обратить внимание при выборе, это категории применения – режимы срабатывания расцепителя.
Электродвигатель – сложный механизм с пусковым током и повторно-кратковременными включениями, при которых он работает не в штатном режиме.
При этом нагрузка на сеть также отличается от номинальной, и механизм расцепления должен нормально срабатывать в нестандартных условиях.
Для переменного тока категории применения обозначаются маркировкой AC. Отличаются характером срабатывания:
- AC-1 – для электрических моторов с активной или малоиндуктивной нагрузкой;
- AC-2 – старт с фазным ротором, реверсивное торможение;
- AC-3 – прямой пуск короткозамкнутого ротора, отключение вращающихся двигателей;
- AC-4 – пуск и остановка электромоторов с короткозамкнутым ротором посредством противовключения. Для такого режима применяются спаренные (реверсивные) контакторы с механической блокировкой, не допускающей одновременного запуска нескольких потребителей. При этом уменьшается In и базовое количество циклов.
Для постоянного существуют собственные категории – DC:
- DC-1 (аналог AC-1) – активная или малоиндуктивная нагрузка;
- DC-2 – пуск электродвигателей с параллельным возбуждением, отключение при номинальной частоте вращения;
- DC-3 – запуск моторов с параллельным возбуждением, отключение при медленном вращении ротора или в неподвижном состоянии;
- DC-4 – пуск электродвигателей с последовательным возбуждением и остановка при номинальных оборотах;
- DC-5 – старт двигателей с последовательным возбуждением и остановка с неподвижным или медленно вращающимся ротором, торможение противотоком.
Промышленные электромоторы с частыми пусками должны поддерживать категорию AC-3, AC-4 – для переменного электротока, и DC-3, DC-4, DC-5 для постоянного.
Номинальный ток и напряжение питания катушки управления
Номинальный ток – наиболее значимый параметр, подбираемый по мощности потребителя.
Главный вопрос: как правильно считать? Любой электродвигатель при запуске кратковременно выдает мощность, часто в 5-7 раз превышающую номинальную.
Тем не менее такая нагрузка сохраняется долю секунды и на работу расцепителя не влияет. Исходя из этого, берем во внимание только номинальную мощность.
Для определения номинала необходимо рассчитать In . В этом нам поможет формула из учебника по физике: In = P/(U √3xcosφ), где P – мощность (Вт), U – напряжение (В), а cosφ- коэффициент мощности двигателя.
Для наглядности рассмотрим конкретный пример: предположим, что у Вас трехфазный станок на 5,5 кВт c cosφ= 0,8 (данное значение записано в паспорте электрооборудования). При включении, по сети будет протекать:
5500Вт / (380Вx√3×30,8)= 10,6А.
К полученному значению еще необходимо прибавить 30% запаса, в итоге оптимальным номиналом будет 13А.
Например, если In будет равен 11,8А, ни в коем случае нельзя брать модель на 12А, иначе при увеличении мощности она сгорит.
Электропитание катушки управления подбирается по двум критериям: тип электротока (переменный или постоянный) и напряжение (от 12В до 440В – постоянный, от 12В до 660В – переменный при частоте 50 Гц и от 24В до 660В – переменный при 60 Гц). Существуют также универсальные модели с катушкой работающей и от переменного, и от постоянного тока.
Механическая и коммутационная износостойкость
Данная характеристика показывает предельное количество циклов включения-выключения – срабатываний расцепителя. Чем их больше, тем дольше будет срок службы. Это значение особенно важно для двигателей с частыми пусками.
Механическая износостойкость показывает количество включений-выключений при отсутствии напряжения. Как правило, средний механизм выдерживает около 10-20 млн. операций.
Коммутационная износостойкость определяет допустимое количество циклов срабатывания и зависит от категории применения. Например, если контактор в режиме AC-3 может переносить 1,7 млн циклов, то в AC-4 – 200 тыс. Как правило, данную характеристику производитель всегда указывает в техническом паспорте.
Коммутационная износостойкость делится на три класса:
- А – самый высокий, гарантирует от 1,5 млн. до 4 млн. операций срабатывания магнитного пускателя в рабочем режиме;
- Б – средний, модели данного класса выдерживают от 630 тыс. до 1,5 млн. переключений;
- В – самый низкий, количество циклов от 100 тыс. до 500 тыс.
Частота включений и время срабатывания
Для электродвигателей с частыми пусками важна частота включений, группируемая по собственным классам.
Допустимое количество циклов в час
Для нормальной работы важно, чтобы максимально возможная частота включения была близка соответствующему параметру механизма расцепления. В ином случае, механизм расцепления может выйти из строя. Например, для промышленного станка оптимальным будет класс 3, допускающий 300 включений в час (в среднем – 5 в минуту).
Скорость срабатывания электромагнитного расцепителя определяется временем:
- включения – промежутком с момента подачи сигнала и до замыкания главных контактов;
- отключения – периодом с момента обесточивания электромагнита до расцепления линии.
При постоянном токе время срабатывания магнитного расцепителя равно нескольким сотням миллисекунд, а при переменном нескольким десяткам миллисекунд.
Дополнительные критерии для правильного выбора
Представленные выше характеристики влияют на работоспособность контактора, тем не менее дополнительные критерии делают пользование более эффективным. Прежде всего это касается конструкционных особенностей электромоторов и условий их эксплуатации.
Коэффициент возврата
Данный параметр рассчитывается по формуле Kв=Uотп/Uср, где:
- Uотп – это напряжение отпускания якоря,
- Uср – напряжение срабатывания.
Для катушек запитанных постоянным током коэффициент возврата равен 0,2-0,3, из-за чего невозможно применить контактор для защиты нагрузки от падения напряжения. Для переменного данное значение равно 0,6-0,7, что допускает такую защиту.
Наличие реверса
Для управления реверсивным двигателем лучше выбрать реверсивный контактор с двумя пускателями в корпусе, соединенными между собой. Между ними установлена механическая защита, блокирующая при коммутации одного контакта включение второго. Это обеспечивает максимально удобную эксплуатацию.
Степень пылевлагозащиты
Выбор данного параметра такой же, как и у любого другого электрооборудования. Если местом размещения будет защищенный шкаф, можно смело брать IP20. В случае размещения в условиях запыленности или влажности, лучше выбрать IP54. При высоком риске попадания воды или оседания конденсата на корпусе, лучше отдать предпочтение IP65.
Как защитить контактор от перегрузок?
Для защиты промышленных электромоторов совместно с контактором необходимо докупить и установить тепловое реле. Его главная функция заключается в размыкании главных контактов при нагревании до предельно высоких температур. Подобирать тепловые реле и дополнительные контакты советую у оффициального дистрибьютора – в интернет магазине АксиомПлюс.
Если надумаете покупать, то там же можно это и сделать. Но главное то что это САМЫЙ вменяемый (на мой взгляд) каталог со всеми характеристиками, которые при этом можно подбирать, а не листать печатные каталоги.
Обязательная защита
Исходя из того, что сверхвысокие температуры выведут из строя рабочий механизм, а силовые соединения при этом могут спаяться – такая защита обязательна. В данной ситуации понадобится аварийная остановка двигателя посредством обесточивания цепи.
Кроме того, тепловое реле стоит от 150 грн, и такое приобретение полностью оправдано. По сути, это страховка на будущее – она увеличит срок эксплуатации электромагнитного расцепителя и защитит его от поломки.
Совмещенный и более дешевый вариант
У популярных производителей, например IEK, есть контакторы (серия КМИ) укомплектованные вмонтированными внутри корпуса тепловыми реле. Если приобрести один из таких аналогов, можно хорошо сэкономить, так как нивелируется необходимость приобретения дополнительных защитных устройств.
Альтернативное и универсальное решение
В качестве альтернативы можно установить один из таких вот универсальных блоков защиты (УБЗ). Он защищает сеть (и электродвигатель) от:
- коротких замыканий;
- скачков напряжения;
- нарушений сопротивлений изоляции;
- технологических перегрузок;
- климатических условий – экстремальных температур, повышенной влажности.
Данная система автоматически измеряет и контролирует все рабочие параметры мотора и не допускает возникновения аварийной ситуации. УБЗ включает функции теплового реле и защищает от ряда других негативных факторов.
Тепловое реле и УБЗ подбираются по номинальному току и напряжению. По конструкционному исполнению монтируются в панель управления или DIN-рейку.
Каким должен быть контактор для электродвигателя с частыми пусками?
Проанализировав вышеизложенные характеристики, можно выделить оптимальные критерии выбора:
- Поддержка категорий применения AC-3 и AC-4 для переменного тока, и DC-3, DC-4, DC-5 – для постоянного;
- Класс коммутационной износостойкости не ниже Б;
- Дополнительная защита тепловым реле или УБЗ;
- Рекомендуемая частота включений не ниже 1200.
Тем не менее такие параметры как, например, напряжение питания катушки управления лучше подбирать исходя из частного случая, а именно марки электродвигателя и специфики его работы. С этим Вам всегда помогут опытные специалисты Аксиом-Плюс.
При написании использовались материалы AXIOMPLUS.COM.UA
Владислав Ромаха специально для METALSTANKI.COM.UA
Копирование для последующей публикации без разрешения автора ЗАПРЕЩЕНО
Источник: http://www.metalstanki.com.ua/node/1650
Подключение ТЭНов через термореле и пускатель
Регуляторы температуры в бытовых целях используют довольно широко, а регулируют они температуру буквально везде: от банального паяльника до микроклимата в доме.
По схематическому решению терморегуляторы (или термореле) бывают самыми различными, а в качестве чувствительного элемента применяются термочувствительные сопротивления, диоды, либо транзисторы (в последнее время, все больше используются микросхемные датчики).
После монтажа, в любом случае, требуется калибровка устройства. Проводится калибровка в два этапа: первый – примерная настройка «на глазок», а второй – точная настройка с использованием измерительных приборов.
В последнее время в быту очень широко стали применяться всевозможные обогревательные устройства совместно с терморегуляторами (термореле).
А, поскольку далеко не всегда мощность обогревателей находится в пределах допустимой мощности регуляторов, то подключать последние к нагревательным элементам приходится через дополнительные устройства (в частности через магнитные пускатели).
Монтаж системы «термореле-пускатель-нагреватель»
Начну объяснение с подключения системы «теплофон» к трехфазной сети по следующей схеме.
Между нулевым проводом сети и первой фазой последовательно включаются терморегулятор Т1 и катушка пускателя К1. Элементы нагревателя R1-R15 подключаются равномерно между нулевым проводом и каждой из фаз сети через нормально разомкнутые контакты пускателя К1.1 — К1.3. Пускатель, в данном случае, был выбран марки АВВ 20-40, 4р.
Работает такая схема так:
Когда температура контролируемого помещения приближается к порогу включения термореле (нижняя уставка), последнее срабатывает и своими контактами подключает к сети питания нагревательные элементы (ТЭНЫ) обогревателя.
После того, как температура помещения достигает верхней уставки, термореле отпускает, отключая питание пускателя, который, в свою очередь, обесточивает нагреватели.
Существует множество всевозможных вариантов исполнения термореле, в том числе и совсем миниатюрные варианты, однако, их максимальная коммутируемая мощность довольно невелика (не более пары киловатт), а подключать к ним напрямую можно и того меньше (из соображения наличия запаса мощности).
Самым идеальным вариантом для управления ТЭНами можно назвать такой вариант, при котором «термушка» будет через небольшой электронный блочок управлять магнитным пускателем (например, типа ПМЕ), который, в свою очередь займется управлением нагревателями, мощность которых может запросто превышать 1500 ватт.
Работает такая схемка следующим образом.
При срабатывании терморегулятора, сигнал от него поступает на мощный транзисторный ключ, выполненный на основе биполярного транзистора, в коллекторную цепь которого подключено электромагнитное реле (к примеру, РЭС-9).
Питается схема от нестабилизированного источника, собранного не трансформаторе Т1 и выпрямителе VD1-VD4.
Реле, срабатывая, подает питание на пускатель ПМЕ, который, в свою очередь, своими нормально открытыми контактами К2.1 и К2.2 подает питание на нагревательные элементы.
Вся схема запитывается через плавкий предохранитель FU1.
После сборки блока регулировки-коммутации необходимо, в первую очередь, проверить правильность монтажа, лишь после этого приступать к настройке всей системы. При безошибочно собранной системе не требуется никаких наладочных работ.
После этого можно начинать настройку его.
Единственное, что надо будет сделать, чтобы правильно настроить систему, выставить уставку опорного напряжения компаратора (устройства сравнения) на выводе 2 устройства, соответствующую необходимой температуре срабатывания. С этой целью придется немного посчитать.
Допустим, что нам необходимо поддерживать температуру помещения в районе +22 градусов Цельсия. В этом случае необходимо перевести значение температуры в шкалу Кельвина, после чего полученное умножить на 0,01 В. В результате этих вычислений и получится значение опорного напряжения, являющееся, одновременно, уставкой температуры (273,15+22)*0,01=2,9515 В.
Надеюсь, моя статья пролила свет на некоторые непонятки этой темы.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.
Источник: http://podvi.ru/elektrokompanenty/sxema-podklyucheniya-tenov-cherez-termorele-i-puskatel.html
Подключение электрического котла отопления
Вступление
Выбор типа котла зависит от оценочной стоимости отопления. На основе расчетов выбирается тип котла отопления. Один из вариантов выбора котла это электрический котел отопления. По названию понимаем, что источником выработки тепла в таком котле будет электричество.
Наиболее дешевый вариант это отопление дома газом. Газ в дом может поставляться централизованно по трубам газопровода или автономно, специальными резервуарами. Сколько стоит газ с доставкой смотрим тут.
Электрический котел отопления не относится к дешевым способам отопления дома. Однако, особенности района, отсутствие других источников тепла (газа, дров, твердого топлива) и доступность электричества не дают выбора.
Таблица расчета стоимости отопления за 1 кВт/час.
Топливо | Стоимость 1кВт*ч | Итого за сезон |
Сухие дрова | 90 копеек | 80 тыс. руб. |
Уголь | 160 коп. | 140 тыс. руб. |
Гранулы, пеллеты | 133 коп. | 120 тыс. руб. |
Дизельное топливо | 280 коп. | 250 тыс. руб. |
Магистральный газ | 50 коп. | 40 тыс. руб. |
Сжиженный газ | 250 коп. | 220 тыс. руб. |
Электричество | 350 коп. | 300 тыс. руб. |
Мощность электрических котлов отопления
Относительным преимуществом электрического котла отопления это широкий диапазон мощности различных котлов и ступенчатый регулятор мощности каждого котла в отдельности.
Можно выделить два диапазона мощности электрических котлов.
- Диапазон от 4 до 18 киловатт;
- От 22 до 60 киловатт.
Указанные диапазоны котлов предполагает:
- Для котлов 4-8 киловатт две ступени переключения;
- Котлов 8-18 киловатт три ступени переключения;
- Для котлов 22- 60 киловатт четыре или три ступени переключения.
Ступенчатое переключение мощности позволяет быстро интегрировать мощность с температурой «за бортом», это экономит расход электричества и удешевляет отопление.
Также, на забываем, что электрический котел не требует эксплуатационных затрат (закупка и привоз топлива, подготовку специального помещения) и практически не требует затрат по обслуживанию.
Форму использования очень проста: правильно подключил и пользуйся.
Разрешение на подключение электрического котла отопления
Как такового разрешения на подключение электрического котла отопления не требуется.
В отличие от газового котла, для которого нужно оборудовать специальное помещение, топочную и сдавать помещение «строгой» комиссии, мощность электрического котла достаточно заложить в общую мощность дома и учесть при получении разрешения на электрическую мощность дома, а схему подключения котла отопления указать в общей электрической схеме (проекте) дома.
Принцип работы электрического котла отопления
Общий принцип электрического котла отопления не сложен. По сути это большой электрический чайник, где мощными ТЭНами производится нагрев теплоносителя в системе отопления. Конечно устройства электрокотла отопления намного сложнее. В нем есть и система автоматики и система дистанционного управления и система контроля за температурой и циркуляционный насос.
Несмотря на конструкцию, тип и марку электрического котла, в них есть один объединяющий тип работ, электрический котел нужно правильно подключить к электропитанию.
Правильное подключение электрического котла отопления
По конструкции электрический котел отопления это металлический шкаф. Тип крепления котла навесной. Для ввода электрического кабеля питания в котел есть специальное отверстие, а всё электрооборудование котла расположено в электрическом шкафу котла.
Выбор электрического кабеля для котла отопления
В подключение электрического котла отопления к электропитанию нет никаких специальных расчетов и «подводных камней». Его нужно подключать, как любой другой бытовой прибор по потребляемой мощности и по нормативам прокладки электропроводки в доме.
Правила подключения электрокотла отопления
Для подключения электрического котла отопления планируется отдельная линия электропроводки (отдельная группа) со своей автоматической защитой. Для защиты электрического кабеля котла используется автоматический выключатель. Номинал и тип автоматического выключателя выбирается по мощности котла, вернее, по мощности тэнов входящих в конструкцию котла.
Электропроводка для котла отопления
Электропитания котла отопления зависит от его конструкции и схемы подключения тэнов. Для потребителя все необходимые данные указаны в паспорте к котлу.
Силовая схема электрического котла отопления с тремя тэнами
Котел отопления может подключаться пятижильным или четырехжильным кабелем. Сечения жил кабеля смотрим в паспорте к котлу и в таблице ниже.
Как видим в таблице 1, для электропитания среднего котла нужны кабели с сечением жил от 2,5 мм (4 кВт) до 6 мм (18 кВт).
Таблица 1
В таблице 2 видим сечения кабелей для более мощных котлов отопления. Как видим, для мощных котлов отопления с тепловой мощностью 60 кВт, нужен электрический кабель с жилами 25 мм и защитный автоматический выключатель перед котлом в 100 Ампер.
Таблица 2
Давайте с ориентируемся и посмотрим, простой тепловой расчет для дома. Не буду показывать расчет с тепловыми потерями, даже не буду учитывать высоту потолка. Простой расчет очень прост.
Примечание: Говоря про сечения жил кабеля имеем в виду только медные жилы, под сечением жилы понимаем площадь сечения поперечного среза жилы кабеля, указанного в паспорте к кабелю.
Прокладка электрического кабеля для котла отопления
Прокладка электрического кабеля делается по нормативам электромонтажа в соответствии с конструкцией дома. Для деревянного дома в трубах или открыто, для каменного дома в коробах или скрыто.
Электрический котел не подключается через розетку, кабель электропитания заводится в котел через заводские отверстия для подключения и подключается к автоматическому выключателю или клеммам, установленным к корпусе котла в электрическом шкафу.
Важно! Любые скрутки, пайки, сварки и другие соединения не предусмотренные конструкцией котла запрещены.
Электрический шкаф котла
Электрический котел отопления имеет свой встроенный электрический шкаф. В нем установлены приборы учета, вводной автомат защиты котла, колодки подключения, приборы контроля и переключения режимов.
Электрический шкаф котла отопления
Электрический кабель электропитания котла заводится в этот электрощит и подключается к вводному автомату котла.
Шаги подключения котла отопления
Подключение котла отопления к электропитанию
В пятипроводной электрической сети фазовые силовые жилы кабеля подключаются к входным зажимам основного автоматического выключателя котла. Нулевой рабочий проводник подключается к разъему, обозначенному буквой «N». Защитный провод электрического питающего кабеля подключается к винтовому разъему, который обозначен значком заземления.
Источник: https://ehto.ru/montazh-elektriki/elektroshhitok/podklyuchenie-elektricheskogo-kotla-otopleniya
Управление электрокотлом : готовый блок управления котлом или электроизделия для подключения электродного котла
Для управления нашим электрокотлом есть два варианта:
- – Вы можете приобрести у нас готовый блок управления электродным котлом ;
- – либо также у нас или самостоятельно (в любом специализированном магазине электрики) Вы можете приобрести автоматический выключатель и магнитный пускатель (контактор), и установить их в свой бокс с электрикой (схема подключения указана в паспорте котла).
В любом случае, каждый из этих вариантов не вызовет у Вас никаких трудностей с подключением нашего электродного котла, так как подключение является очень простым.
Рассмотрим каждый из вариантов подключения электрокотла подробнее и Вы выберете наиболее удобный для Вас.
Сразу хотим заметить, что вся электрика представленная у нас в магазине является оригинальной, от проверенных и надежных производителей, которые заслужили доверие во всем мире.
Наши блоки управления котлом укомплектованы только высококачественной электрикой таких марок как АВВ (Германия) или Dekraft (фабричный Китай), оба этих производителя имеют заслуженную безупречную репутацию во всем мире в качестве выпускаемой продукции, поэтому Вы можете быть уверены в надежной и бесперебойной работе блока управления котлом приобретенного у нас. Почему мы это уточняем? Это связано с тем, что сейчас часто многие производители котлов укомплектовывают свои блоки управления котлом очень низкокачественными комплектующими и электроизделиями совершенно непонятных брендов, которые, конечно, не могут дать требуемый уровень надежности и безопасности в системе отопления. Поэтому при приобретении котла с готовым блоком управления, проявляйте бдительность и всегда интересуйтесь из каких комплектующих электроизделий, и от каких фирм производителей электрики собран данный блок управления котлом. Выбирайте проверенных и надежных фирм производителей электрики, это обеспечит надежную и исправную работу всей отопительной системы много лет.
Если мы говорим об отдельном приобретении автоматического выключателя и магнитного пускателя (контактора) для их дальнейшего установления в бокс для электрики, то эти электроизделия- это обычная расходная электрика, которая продается повсеместно.
Вам не потребуется приобретать никаких фирменных комплектующих нашего производства. Вся электрика для нашего электродного котла приобретается исключительно по Амперажу без привязки к определенным торговым маркам.
Для наших электрических котлов Вы можете приобрести электроизделия как у нас, из представленных ниже на этой странице производителей, так и самостоятельно, этих или других производителей, на Ваш выбор.
Готовый блок управления электрокотлом
Блок управления фирмы “АВВ” (Германия) | руб. | 4900 | 4950 | 5250 | 7570 | 7570 | 7580 | 8850 | 8850 | 8900 | 8900 |
Блок управления Фирмы “Dekraft” (фабричный Китай) | руб. | 2880 | 2880 | 2880 | 3300 | 3300 | 3300 | 3400 | 3400 | 3400 | 3400 |
Блок управления фирмы “АВВ” (Германия) | руб. | 5950 | 6050 | 6100 | 8200 | 8200 | 8300 | 10200 | 10200 | 10700 | 10700 | 31000 | 35000 | 44000 |
Блок управления Фирмы “Dekraft” (фабричный Китай) | руб. | 3450 | 3450 | 3450 | 3800 | 3800 | 3800 | 4400 | 4400 | 4400 | 4400 | 17000 | 22000 | 29000 |
Электроизделия: автоматический выключатель и магнитный пускатель
Электроизделия для электрического котла однофазного
Наименование котлов | Ед. изм. | ЭОУ 1/2 | ЭОУ 1/3 | ЭОУ 1/4 | ЭОУ 1/5 | ЭОУ 1/6 | ЭОУ 1/7 | ЭОУ 1/8 | ЭОУ 1/9 | ЭОУ 1/10 | ЭОУ 1/12 | |
Фирма «АВВ» | автомат | руб. | 600 | 650 | 650 | 670 | 670 | 680 | 850 | 850 | 900 | 900 |
Электромагнитный пускатель(контактор) | руб. | 3300 | 3300 | 3800 | 5900 | 5900 | 5900 | 7000 | 7000 | 7000 | 7000 | |
Итого: | руб. | 3900 | 3950 | 4250 | 6570 | 6570 | 6580 | 7850 | 7850 | 7900 | 7900 | |
БОКС фирмы «АВВ» | руб. | 1000 | ||||||||||
БОКС фирмы «DEKraft» | руб. | 600 | ||||||||||
Фирма «Legrand» | автомат | руб. | 550 | 580 | 580 | 600 | 600 | 600 | 700 | 700 | 800 | 800 |
Электромагнитный пускатель (контактор) | руб. | 3000 | 3000 | 3000 | 3700 | 3700 | 3700 | 6100 | 6100 | 6100 | 6100 | |
Итого: | руб. | 3550 | 3580 | 3580 | 4300 | 4300 | 4300 | 6800 | 6800 | 6900 | 6900 | |
БОКС фирмы «АВВ» | руб. | 1000 | ||||||||||
БОКС фирмы «DEKraft» | руб. | 600 | ||||||||||
Фирма «DEKraft» | автомат | руб. | 280 | 280 | 280 | 300 | 300 | 300 | 350 | 350 | 350 | 350 |
Электромагнитный пускатель (контактор) | руб. | 1600 | 1600 | 1600 | 2000 | 2000 | 2000 | 2050 | 2050 | 2050 | 2050 | |
Итого: | руб. | 1880 | 1880 | 1880 | 2300 | 2300 | 2300 | 2400 | 2400 | 2400 | 2400 | |
БОКС фирмы «АВВ» | руб. | 1000 | ||||||||||
БОКС фирмы «DEKraft» | руб. | 600 |
Электроизделия для электрического котла трехфазного
Наименование котлов | Ед. изм. | ЭОУ 3/6 | ЭОУ 3/9 | ЭОУ 3/12 | ЭОУ 3/15 | ЭОУ 3/18 | ЭОУ 3/21 | ЭОУ 3/24 | ЭОУ 3/27 | ЭОУ 3/30 | ЭОУ 3/36 | ЭОУ 3/60 | ЭОУ 3/90 | ЭОУ 3/120 | |
Фирма «АВВ | автомат | руб. | 1150 | 1250 | 1300 | 1400 | 1400 | 1400 | 1800 | 1800 | 2300 | 2300 | 11000 | 12000 | 15000 |
Электромагнитный пускатель (контактор) | руб. | 3800 | 3800 | 3800 | 5800 | 5800 | 5900 | 7400 | 7400 | 7400 | 7400 | 18000 | 21000 | 27000 | |
Итого: | руб. | 4950 | 5050 | 5100 | 7200 | 7200 | 7300 | 9200 | 9200 | 9700 | 9700 | 29000 | 33000 | 42000 | |
БОКС фирмы «АВВ» | руб. | 1000 | |||||||||||||
БОКС фирмы «DEKraft» | руб. | 600 | 1200 | С монтажкой 1900 | |||||||||||
Фирма «Legrand» | автомат | руб. | 900 | 950 | 950 | 1050 | 1050 | 1050 | 1200 | 1200 | 1250 | 1250 | 7500 | 8500 | 12200 |
Электромагнитный пускатель (контактор) | руб. | 4500 | 4500 | 4300 | 4300 | 4300 | 4300 | 5600 | 5600 | 5600 | 5600 | 13300 | 26900 | 38800 | |
Итого: | руб. | 5400 | 5450 | 5450 | 5350 | 5350 | 5350 | 6800 | 6800 | 6850 | 6850 | 20800 | 35400 | 51000 | |
БОКС фирмы «АВВ» | руб. | 1000 | |||||||||||||
БОКС фирмы «DEKraft» | руб. | 600 | 1200 | С монтажкой 1900 | |||||||||||
Фирма «DEKraft» | автомат | руб. | 450 | 450 | 450 | 450 | 450 | 450 | 600 | 600 | 600 | 600 | 3500 | 3600 | 7000 |
Электромагнитный пускатель (контактор) | руб. | 2000 | 2000 | 2000 | 2350 | 2350 | 2350 | 2800 | 2800 | 2800 | 2800 | 9000 | 13400 | 16000 | |
Итого: | руб. | 2450 | 2450 | 2450 | 2800 | 2800 | 2800 | 3400 | 3400 | 3400 | 3400 | 12500 | 17000 | 23000 | |
БОКС фирмы «АВВ» | руб. | 1000 | |||||||||||||
БОКС фирмы «DEKraft» | руб. | 600 | 1200 | С монтажкой 1900 |
К преимуществам нашей компании «Электрокотлы» можно отнести:
- высокое качество оборудования, будь то котел ЭОУ или дополнительные детали для него;
- доступная цена;
- широкая география работы;
- услуги по монтажу котлов;
- возможность установить дистанционную систему управления оборудованием.
Источник: http://kotel-ognivo.ru/our-plans/electrical-products
Как подобрать тепловое реле или правильная защита электродвигателя от перегрузки?
Правильно подобрать тепловое реле — одно из важнейших условий защиты электродвигателя от перегрузки.
Напомню, что «защита электродвигателя от перегрузки должна устанавливаться в тех случаях, когда возможна перегрузка механизма по технологическим причинам, а также при тяжелых условиях пуска и для ограничения длительности пуска при пониженном напряжении.
Защита должна выполняться с выдержкой времени и может быть осуществлена тепловыми реле.» (из Инструкции по монтажу и пуску электродвигателей)
Чтобы подобрать тепловое реле, сперва определяем номинальный ток двигателя Iн. Этот ток указан на шильдике двигателя (см. фото ниже). В нашем случае это ток Iн = 14 Ампер
Потом исходя из номинального тока двигателя подбираем тепловое реле и соответствующий ему пускатель нужной величины. Реле имеет шкалу, калиброванную в амперах. Обычно шкала соответствует значению тока уставки (тока несрабатывания реле).
Срабатывания реле происходит в пределах 5-20% от превышения тока уставки потребляемым током электродвигателя. Т.е., при перегрузке электродвигателя на 5-20% (1,05*Iн — 1,2*Iн), произойдет срабатывание теплового реле в соответствии с его токовременной характеристикой.
Поэтому выбираем реле таким образом, чтобы ток несрабатывания теплового реле был на 5-10% выше от номинального тока защищаемого электродвигателя (см. таблицу ниже).
Таблица для подбора тепловых реле
0,37 | РТЛ-1005 | 0,6…1 | РТ 1305 | 0,6…1 |
0,55 | РТЛ-1006 | 0,95…1,6 | РТ 1306 | 1…1,6 |
0,75 | РТЛ-1007 | 1,5…2,6 | РТ 1307 | 1,6…2,5 |
1,5 | РТЛ-1008 | 2,4…4 | РТ 1308 | 2,5…4 |
2,2 | РТЛ-1010 | 3,8…6 | РТ 1310 | 4…6 |
3 | РТЛ-1012 | 5,5…8 | РТ 1312 | 5,5…8 |
4 | РТЛ-1014 | 7…10 | РТ 1314 | 7…10 |
5,5 | РТЛ-1016 | 9,5…14 | РТ 1316 | 9…13 |
7,5 | РТЛ-1021 | 13…19 | РТ 1321 | 12…18 |
11 | РТЛ-1022 | 18…25 | РТ 1322 | 17…25 |
15 | РТЛ-2053 | 23…32 | РТ 2353 | 23…32 |
18,5 | РТЛ-2055 | 30…41 | РТ 2355 | 28…36 |
22 | РТЛ-2057 | 38…52 | РТ 3357 | 37…50 |
25 | РТЛ-2059 | 47…64 | ||
30 | РТЛ-2061 | 54…74 |
Для большинства электродвигателей, произведенных в Китае, мы предлагаем подбирать ток несрабатывания теплового реле равным номинальному. Почему — читайте здесь. Подобрав тепловое реле и соответствующий ему магнитный пускатель, настраиваем тепловое реле на нужный нам ток срабатывания ( см. фото).
Обращайтесь, мы поможем подобрать защитное оборудование для Вашего электродвигателя.
Удачи! Александр Коваль
0671717147
Источник: https://blog.electrostal.com.ua/kak-podobrat-teplovoe-rele.html
Схемы подключения магнитного пускателя
Подключения магнитного пускателя и малогабаритных его вариантов, для опытных электриков не представляет никакой сложности, но для новичков может оказаться задачей над которой пройдется задуматься. Магнитный пускатель является коммутационным устройством для дистанционного управления нагрузкой большой мощности.
На практике, зачастую, основным применением контакторов и магнитных пускателей есть запуск и остановка асинхронных электродвигателей, их управления и реверс оборотов двигателя. Но свое использование такие устройства находят в работе и с другими нагрузками, например компрессорами, насосами, устройствами обогрева и освещения.
При особых требованиях безопасности (повышенная влажность в помещении) возможно использования пускателя с катушкой на 24 (12) вольт. А напряжение питания электрооборудования при этом может быть большим, например 380вольт и большим током.
Кроме непосредственной задачи, коммутации и управления нагрузкой с большим током, еще одной немаловажной особенностью есть возможность автоматического “отключения” оборудования при “пропадание” электричества.
Наглядный пример. При работе какого то станка, например распиловочного, пропало напряжение в сети. Двигатель остановился.
Рабочий полез к рабочей части станка, и тут напряжение опять появилось. Если бы станок управлялся просто рубильником, двигатель сразу бы включился, в результате — травма. При управлении электродвигателем станка с помощью магнитного пускателя, станок не включится, пока не будет нажата кнопка “Пуск”.
Стандартная схема. Применяется в случаях когда нужно осуществлять обычный пуск электродвигателя. Кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Вместо двигателя может быть любая нагрузка подключенная к контактам, например мощный обогреватель.
В данной схеме силовая часть питается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В случаях однофазного напряжения, задействуются лишь две клеммы.
В силовую часть входит: трех полюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный электродвигатель М. Цепь управления получает питание от фазы «А».
В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, подключенный параллельно кнопке «Пуск». При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят.
Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на “3” контакт кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах.
Обратите внимание. В зависимости от номинала напряжения самой катушки и используемого напряжения питающей сети, будет разная схема подключения катушки.
Например если катушка магнитного пускателя на 220 вольт – один ее вывод подключается к нейтрале, а другой, через кнопки, к одной из фаз. Если номинал катушки на 380 вольт – один вывод к одной из фаз, а второй, через цепь кнопок к другой фазе.
Существуют также катушки на 12, 24, 36, 42, 110 вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение. При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются.
Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на электродвигатель. Двигатель начинает вращаться. Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.
Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО. В случае если не будет самоподхвата, будет необходимо все время держать нажатой кнопку «Пуск» чтобы работал электродвигатель или другая нагрузка.
Для отключения электродвигателя или другой нагрузки достаточно нажать кнопку «Стоп»: цепь разорвется и управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат электродвигатель от напряжения сети.
Чтобы не тянуть лишний провод на кнопку «Пуск», можно поставить перемычку между выводом катушки и одним из ближайших вспомогательных контактов, в данном случае это «А2» и «14НО». А уже с противоположного вспомогательного контакта провод тянется непосредственно на “3” контакт кнопки «Пуск».
Как выбрать автоматический выключатель (автомат) для защиты схемы?
Прежде всего выбираем сколько “полюсов”, в трехфазной схеме питания естественно нужен будет трехполюсный автомат, а в сети 220 вольт как правило, двохполюсный автомат, хотя будет достаточно и однополюсного.
Следующим важным параметром будет ток сработки.
Например если электродвигатель на 1,5 кВт. то его максимальный рабочий ток — 3А (реальный рабочий может быть меньше, надо измерять). Значит, трехполюсный автомат надо ставить на 3 или 4А.
Но у двигателя, мы знаем, пусковой ток намного больше рабочего, а значит обычный (бытовой) автомат с током в 3А будет срабатывать сразу при пуске такого двигателя.
Характеристику теплового расцепителя нужно выбирать D, чтобы при пуске автомат не срабатывал.
Или же, если такой автомат не просто найти, можно по подбирать ток автомата, чтобы он был на 10-20% больше рабочего тока электродвигателя.
Можно и удаться в практический эксперимент и с помощью измерительных клещей замерить пусковой и рабочий ток конкретного двигателя.
Например для двигателя на 4кВт, можно ставить автомат на 10А.
Для защиты от перегрузки двигателя, когда ток возрастает выше установленного (например пропадания фазы) — контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя разрывается.
В данном случае, тепловое реле выполняет роль кнопки «Стоп», и стоит в той же цепи, последовательно. Где его поставить — не особо важно, можно на участке схемы L1 — 1, если это удобно в монтаже.
С использованием теплового расцепителя, отпадает надобность так тщательно подбирать ток вводного автомата, так как с тепловой защитой вполне должно справится тепловое реле двигателя.
Данная необходимость возникает, тогда когда нужно чтобы движок вращался поочередно в обоих направлениях.
Смена направления вращения реализуется простим способом, меняются местами любые две фазы.
Когда включен пускатель КМ1, это будет «правое» вращение. Когда включается КМ2 — первая и третья фазы меняются местами, движок будет крутиться «влево». Включение пускателей КМ1 и КМ2 реализуется разными кнопками «Пуск вперед» и «Пуск назад«, выключение — одной, общей кнопкой «Стоп» , как и в схемах без реверса.
В таких схемах запуска всегда должна быть защита от одновременного включения кнопок “вперед” и “назад”.
Реверсивный пускатель должен иметь механическую защиту от одновременного включения двух его половин. А если он состоит из двух отдельных пускателей, между ними должен стоять специальный механический блокиратор.
Вторая защита – электрическая. Контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если случайно нажать обе кнопки “пуск”, ничего не получится — электродвигатель будет слушаться той кнопки, которая нажата раньше.
Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но так-как пятого контакта, в большинства магнитных пускателей нет, можно поставить дополнительный контакт. Например приставка ПКИ.
с катушкой на 220 вольт
с катушкой на 380 вольт
Источник: http://elektt.blogspot.com/2016/09/podklyucheniya-magnitnogo-puskatelya.html