Что такое вихревые токи и какие меры принимают для их уменьшения

Вихревые токи Фуко

Содержание:

В некоторых случаях движение металлических деталей в электрических машинах и устройствах происходит через магнитные поля.

В других ситуациях возможны пересечения неподвижных металлических элементов с силовыми линиями магнитного поля, изменяющегося по величине. В результате, внутри металлических деталей происходит индуктирование ЭДС самоиндукции.

Под влиянием ЭДС в них образуются вихревые токи Фуко, замыкающиеся в массе и вызывающие образование вихревых токовых контуров.

Физические свойства и определение токов Фуко

К вихревым токам относятся электрические токи, которые возникают под влиянием электромагнитной индукции, появляющейся в металлической или другой проводящей среде. Эта индукция появляется под воздействием изменяющегося магнитного потока.

В свою очередь вихревые токи способствуют появлению собственных магнитных потоков. В соответствии с законом Ленца, они оказывают противодействие магнитному потоку катушки и делают его слабее. Это приводит к нагреву сердечника и бесполезным тратам электрической энергии.

Данный процесс можно рассмотреть подробнее на примере металлического сердечника. На него помещается катушка, с пропущенным переменным током. Вокруг катушки происходит образование переменного магнитного тока, пересекающего сердечник.

Обратите внимание

Одновременно в нем наводится индуцированная электродвижущая сила, вызывающая, в свою очередь, вихревые токи. Их действие вызывает нагревание сердечника.

При незначительном сопротивлении сердечника, наведенные токи могут иметь довольно большое значение и привести к существенному нагреву.

Как уменьшить действие токов Фуко

Действие вихревых токов необходимо снизить, поскольку мощности, бесполезно расходуемые для нагрева сердечника, приводят к снижению КПД электромагнитных устройств.

С целью уменьшения этой мощности, в магнитопроводе необходимо увеличить сопротивление. Поэтому для набора сердечников используются отдельные тонкие пластины, толщиной от 0,1 до 0,5 мм.

Изоляция пластин между собой осуществляется специальными лаками или окалиной.

Набор магнитопроводов для всей аппаратуры переменного тока и сердечников для устройств постоянного тока также осуществляется из пластин, изолированных между собой. Для их изготовления применяется штампованная листовая электротехническая сталь. Плоскости пластин размещаются параллельно с направлением магнитного потока.

Таким образом, сечение сердечника оказывается разделенным, что приводит к ослаблению и уменьшению магнитных потоков. Соответственно, наблюдается снижение ЭДС, индуктируемых этими потоками. Именно они способствуют появлению вихревых токов.

Практикуется ввод в материал сердечника специальных добавок, способствующих росту его электрического сопротивления.

В некоторых конструкциях катушек для набора сердечников используется отожженная железная проволока. Расположение железных полосок осуществляется параллельно с линиями магнитного потока.

Важно

Ограничение вихревых токов, протекающих в перпендикулярных плоскостях с магнитным потоком, выполняется с помощью изолирующих прокладок.

Снижение токов Фуко в проводах происходит следующим образом: в состав жгутов входят отдельные жилы, изолированные между собой.

Использование вихревых токов

Несмотря на большое количество отрицательных моментов, токи Фуко нашли свое применение в различных областях. Например, они успешно используются в электрических счетчиках как магнитный тормоз диска.

Токи Фуко применяются во многих технологических операциях, связанных с токами высокой частоты. Без них не обходится изготовление вакуумных устройств и приборов, где требуется тщательная откачка воздуха и газов.

Металлическая арматура, помещенная внутрь баллона, содержит остатки газа, удаляющиеся только после заваривания колбы. Полное удаление газов производится высокочастотным генератором, в поле которого помещается прибор.

Источник: https://electric-220.ru/news/vikhrevye_toki_fuko/2016-06-13-975

Токи фуко полезное и вредное действие

Электричество окружает нас не только на производстве, но и в быту. Человек может даже не знать, что такое вихревые токи, но с работой, ими совершаемой, ежедневно сталкиваться.

Например, люди давно привыкли включать свет простым нажатием клавиши выключателя, не задумываясь о происходящих при этом процессах. Так и случилось в данном случае.

Поэтому чтобы понять, что же скрывается под термином «вихревые токи Фуко» и определиться с механизмом их возникновения, необходимо вспомнить свойства электрического тока. Но сначала ответим на вопрос «почему именно Фуко»?

Впервые вихревые токи были упомянуты в трудах французского физика Араго Д. Ф. Он обратил внимание на странное поведение медного диска, над которым располагалась вращающаяся намагниченная стрелка. Без видимых причин диск начинал вращаться вместе с вращением стрелки. В то время (1824 г.

) объяснить такое поведение еще не могли, поэтому феномен получил название «явление Араго». Спустя несколько лет другой ученый – М. Фарадей, применив к явлению Араго открытый им закон электромагнитной индукции, пришел к выводу, что в данном случае движение диска легко объяснить с точки зрения упомянутого закона.

Согласно предложенному объяснению, вращающееся магнитное поле воздействует на атомы проводника (медного диска) и вызывает появление направленного движения заряженных (поляризованных) частиц в структуре. Одно из свойств электрического тока состоит в том, что вокруг проводника всегда существует магнитное поле.

Нетрудно догадаться, что и вихревые токи создают свое поле, вступающее во взаимодействие с основным, их порождающим. Слово «вихревые» характеризует способ распространения таких токов в проводнике: их направления закольцованы. Основываясь на работах Араго и Фарадея, серьезно вихревые токи изучал физик Фуко.

Отсюда и полученное название.

Эти токи мало чем отличаются от индукционных, вырабатываемых генераторами. Если есть вихревое магнитное поле (переменное, вращающееся) и находящийся рядом проводник, то в нем благодаря действию электромагнитных полей наводятся токи.

Чем больше и массивнее проводник, тем выше действующее значение создающихся токов. Причем, вихревые токи всегда создают такое магнитное поле, которое противится изменению потока.

С ростом тока-первопричины возрастает направленная встречно ЭДС, а при снижении, наоборот, поле вихревых токов поддерживает основной поток. Вышесказанное следует из закона Ленца.

Совет

Однозначно нельзя сказать, полезны или вредны вихревые токи: в некоторых случаях они расцениваются как паразитные и используются различные технологические решения для их уменьшения, в других же, напротив, востребованными оказываются сами свойства таких токов.

Каждый любознательный мальчишка однажды разбирал выброшенный трансформатор. Сердечник (основа, на которой намотаны витки обмотки) всегда выполнен не цельным, а набирается из большого количества тонких пластин электротехнической стали (он называется шихтованным).

Все составляющие конструкцию пластины покрываются изолирующим лаком и запекаются для надежного соединения. Иногда сердечник дополнительно стягивается изолированной шпилькой. Такое усложнение конструкции вынужденное: оно необходимо для существенного снижения вихревых токов в сердечнике.

Ведь, как уже было сказано, чем менее массивен проводник, тем большим сопротивлением электрическому току он обладает.

В других случаях некоторые свойства вихревых токов оказываются востребованными. Например, работа индукционных сталеплавильных печей основана на нагревающем массивный проводник действии вихревых токов, наведенных специальным генератором. Кроме того, их используют для определения наличия незаметных деффектов в структуре металла.

fb.ru

Что такое вихревые токи

Вихревые токи считаются одним из наиболее удивительных явлений, встречающихся в электротехнике. Поразительно, что человечество научилось использовать негативные аспекты действия вихревых токов во благо.

История открытия вихревых токов

В 1824 году французский физик Даниэль Араго впервые наблюдал действие вихревых токов на медный диск, расположенный под магнитной стрелкой на одной оси. При вращении стрелки в диске наводились вихревые токи, приводя его в движение. Это явление получило название «эффекта Араго» в честь его первооткрывателя.

Исследования вихревых токов были продолжены французским физиком Жаном Фуко. Он подробно описал их природу и принцип действия, а также наблюдал явление нагрева токопроводящего ферромагнетика, вращаемого в статическом магнитном поле. Токи новой природы были тоже названы в честь исследователя.

Природа вихревых токов

Токи Фуко могут иметь место при воздействии на проводник переменного магнитного поля, либо при перемещении проводника в статическом магнитном поле. Природа вихревых токов аналогична индукционным, которые возникают в линейных проводах при прохождении через них электрического тока. Направление вихревых токов замкнуто по кругу и противоположно вызывающей их силе.

Токи Фуко в хозяйственной деятельности человека

Самый простой пример проявления токов Фуко в обыденной жизни – их воздействие на магнитопровод обмоточного трансформатора. Из-за воздействия наведенных токов появляется низкочастотная вибрация (трансформатор гудит), способствующая сильному нагреву. В этом случае энергия тратится впустую, а КПД установки падает.

Для предотвращения значительных потерь сердечники трансформаторов не изготовляют цельными, а набирают из тонких полос электротехнической стали с низкой удельной электропроводностью. Полосы изолированы между собой электротехническим лаком или слоем окалины.

Появление ферритовых элементов позволило выполнять малогабаритные магнитопроводы цельными.

Обратите внимание

Эффект от действия вихревых токов используется повсеместно в промышленности и машиностроении. Поезда на магнитной подвеске используют токи Фуко для торможения, высокоточные приборы имеют систему демпфирования указывающей стрелки, основанной на действии вихревых токов.

В металлургии широко распространены индукционные печи, имеющие целый комплекс преимуществ перед аналогичными установками. В индукционной печи нагреваемый металл можно поместить в безвоздушное пространство, добиваясь его полной дегазации.

Индукционная плавка черных металлов также получила широкое распространение в металлургии ввиду высокой экономичности установок.

KakProsto.ru

Что такое токи Фуко, их полезное использование, в каких случаюх с ними приходится бороться?

0970097

Вихревые токи или токи Фуко́ (в честь Ж. Б. Л. Фуко) — вихревые индукционные токи, возникающие в проводниках при изменении пронизывающего их магнитного потока. Полезное использование ….Это свойство используется для демпфирования подвижных частей гальванометров, сейсмографов и др.

Тепловое действие токов Фуко используется в индукционных печах — в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нем возникают вихревые токи, разогревающие его до плавления.

С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации. Паразитные токи фуко

Во многих случаях токи Фуко могут быть нежелательными. Для борьбы с ними принимаются специальные меры: с целью предотвращения потерь энергии на нагревание сердечников трансформаторов, эти сердечники набирают из тонких пластин, разделённых изолирующими прослойками. Появление ферритов сделало возможным изготовление этих проводников сплошными.

Источник: http://pol-vre.ru/p-v/toki-fuko-poleznoe-i-vrednoe-dejstvie.html

Вихревые токи, хитрый трансформатор

Бытующее представление о том, что давление в патроне, в корпусе артиллерийского снаряда или в камере сгорания ракетного двигателя формируется только газами — глубоко ошибочно.

26. Вихревые токи, хитрый трансформатор

Замкнутые токи возникают в массивных проводниках, когда изменяются пронизывающие их магнитные поля. Их называют индуцированными токами (токами Фуко), так как они наводятся изменяющимися магнитными полями и этот процесс называется электромагнитной индукцией. Вихревые токи показаны в сечении массивного проводящего тела пунктирными линиями на рис. 105, a.

а) b)

с)

Рис. 105. а) схема вихревых токов в массивном теле; b) разрез тела; с) фото хитрого трансформатора; d) схема формирования магнитных полей хитрого трансформатора

Вполне естественно, что магнитное поле, формируемое током проводимости вокруг проводника, по которому он течёт, проникает в массивное тело и ориентирует в нём электроны так, как они сориентированы в проводнике, и направление движения электронов в проводнике и в массивном теле совпадают.

Вполне естественно, что на формирование вихревых токов расходуется энергия. Чтобы уменьшить её, надо разорвать электрическую цепь, по которой движутся свободные электроны в массивном теле.

Для этого его делают не сплошным, а собирают из пластин (рис. 105, b) и изолируют плоскости их контакта. В результате общая электрическая цепь массивного тела разрывается и вихревое движение электронов в его сечении нарушается.

За счёт этого потери электрической энергии уменьшаются.

Полая катушка индуктивности – давно известное электротехническое устройство. Однако, оказалось, что магнитное поле, формируемое обмоткой такой катушки, зависит от схемы её намотки.

Читайте также:  Холодильник минск, проблемы с морозильной камерой

Это необычное явление обнаружил российский изобретатель инженер Зацаринин С. Б. и назвал такую катушку «хитрый трансформатор» (рис. 105, с). В его работе имеются элементы, которые противоречат существующим знаниям по электродинамике.

Вот как он описал работу хитрого трансформатора.

«Создан трансформатор похожий на классический. Имеется первичная и вторичная сторона, то есть. передающая и приемная. На фото (рис. 105, с) показан общий вид этого трансформатора. Входная обмотка хитрого трансформатора обладает всеми свойствами классической индуктивности. В качестве сердечника используется токопроводящий стержень из любого материала, включая жидкости, газы и любые металлы.

В экземпляре на фото (рис. 105, с) использовался отрезок медной трубки D=16 мм, L=80мм. Этот же стержень является «вторичной обмоткой», т. е. с его торцов снимается выходное напряжение.

Важно

Только не говорите мне о токах Фуко, короткозамкнутом витке, о принципиальной невозможности наведения напряжения и т. д. Нет никаких вихревых токов — любая сплошная железяка работает, по крайней мере, до 200кГц (выше не проверял).

Нет КЗ витка — введение и извлечение сердечника не меняет индуктивность первичной обмотки даже в третьем знаке после запятой.

Таким образом, имеем силовой трансформатор с передачей входного напряжения (и мощности) из изолированной друг от друга первичной во вторичную цепи с коэффициентом передачи, примерно, единица.

Параметры первичной обмотки не имеют никаких особенностей и могут быть рассчитаны на напряжения милливольт…мегавольт (только вопросы изоляции).

Вторичная обмотка, одновременно являющаяся сердечником и расположенная внутри первичной обмотки, представляет собой в частном случае отрезок проводника, выполненного из любого токопроводящего материала в форме вытянутого цилиндра или пустотелой трубки с очень малым активным и реактивным сопротивлением.

Мы можем иметь неограниченное (в разумных пределах) напряжение между торцами трубки и в то же время никаким соединением внутри неё не можем получить ток. Вот и ответ на вопрос о токах Фуко и КЗ витке. В сердечнике принципиально не могут возникнуть какие-либо токи, кроме тока внешней нагрузки.»[2].

Наши пояснения

В Интернете уже появилась информация о якобы раскрытом секрете «хитрого» трансформатора. Показывался видеофильм, в котором «хитрый» трансформатор представлялся обыкновенным цилиндром без намотки какого-либо провода.

Он формировал напряжение на вторичной обмотке, роль которой выполнял металлический стержень, вставленный в цилиндр. Попытаемся дать физическую интерпретацию интернетовскому «хитрому» трансформатору (рис. 105, d).

Совет

Представим два параллельных провода А и В, в которых ток течёт снизу вверх, от плюсовых клемм к минусовым. Известно, что вокруг этих проводов сформируются равнонаправленные магнитные поля. В зоне контакта магнитные силовые линии направлены навстречу друг другу, в результате такие провода сближаются (рис. 16, а).

А теперь представим, что вместо двух проводов взят цилиндр 1 и к его концам присоединены те же электрические полюса. Теперь под действием электрического потенциала все электроны цилиндра примут ориентированное положение от его плюсового конца к минусовому и кольцевые сближающиеся магнитные силовые линии заполнят всё внутренне пространство цилиндра.

Подсоединяем к клеммам цилиндра провода переменного тока. Направления магнитных полей будут меняться с частотой тока и каждый раз, сближаясь, будут заполнять все внутреннее пространство цилиндра.

Вставляем в цилиндр токопроводящий стержень 2 и к его концам подключаем лампочку 3.

Так как магнитные поля, формируемые электронами цилиндра, будут всегда сближаться, независимо от частоты изменения тока, то эти поля будут пронизывать токопроводящий стержень и с такой же частотой менять ориентацию электронов вдоль стержня.

В результате на его концах будет возникать электрический потенциал. Если мы включим в сеть этого стрежня лампочку 3 (рис. 105, d), то она будет гореть.

Таким образом, понимание подобных процессов базируется на понимании закономерностей взаимодействия магнитных полей (рис. 16), которые ещё не все раскрыты. Вполне естественно, что не раскрыт ещё и секрет «хитрого» трансформатора. Зацаринин С. Б. дополнительно поясняет особенности его работы.

«Основным, парадоксальным свойством «хитрого» трансформатора является независимость коэффициента трансформации от количества витков в первичной и вторичной цепи при постоянном коэффициенте трансформации по напряжению и току. Кроме того, в «хитром» трансформаторе индуктивность обмоток не зависит от числа витков в обмотке.

Передача энергии из первичной обмотки во вторичную с помощью «хитрого» трансформатора может осуществляться и при взаимно перпендикулярном  расположении  витков  первичной  и  вторичной цепей. Согласно современной научной парадигме этого не может быть.

«Хитрый» трансформатор имеет ряд других  “особенностей”  поведения, поэтому уместно было бы назвать явление, управляемое работой «хитрого» трансформатора, «хитрой индуктивностью».

Зацаринин Сергей Борисович – принципиален в отношении непонятных физических процессов и ищет экспериментальное им объяснение. Это и стало основой нашего научного сотрудничества, которое привело к разработке первого в мире самовращающегося генератора электрических импульсов (рис. 43) и последующих моделей МГ-2 и МГ-3, в которых принцип хитрого трансформатора пока не реализован.

ЗАКЛЮЧЕНИЕ

Обратите внимание

Объём новой электродинамической информации достаточен, чтобы считать её введением в Новую электродинамику, которая делает лишь первые шаги в своём развитии, но они оказались столь весомыми, что их невозможно уже игнорировать.

Однако, история науки убедительно свидетельствует о нежелании корифеев устаревших знаний знакомиться с новыми знаниями и проверять их достоверность.

Потомки будут потешаться над поразительно низким научным интеллектом современной академической элиты.

Источник: http://fiziku5.ru/uchebnye-materialy-po-fizike/vixrevye-toki-xitryj-transformator-3

Какой из способов эффективнее защищает от токов Фуко?

 Обмотка лабораторного регулировочного автотрансформатора (ЛАТР) намотана на железном сердечнике, имеющем форму прямоугольного тороида (рис.). Для защиты от вихревых токов Фуко сердечник делают из тонких железных пластин, покрытых изолирующим слоем лака. Такой сердечник можно сделать разными способами:  а) набирая его из тонких колец, положенных стопкой одно на другое;

 б) свертывая в рулон тонкую длинную ленту шириной h;

 в) собирая из прямоугольных пластин размером l × h, расположив их вдоль радиусов цилиндра.

Эксперимент.  Наблюдать возникновение токов Фуко можно с помощью следующей установки. Маятник, состоящий из куска металла, подвешенного на нити между полюсами электромагнита, выведенный из положения равновесия при отсутствии тока в электромагните, совершает слабо затухающие колебания.

При включении тока колебания почти мгновенно затухают, и движение маятника до его остановки напоминает движение в вязкой среде.

Это объясняется тем, что возникшие при движении маятника в магнитном поле токи Фуко имеют такое направление, что действующие на них со стороны магнитного поля силы тормозят движение маятника.

 Если сплошной сектор маятника заменить гребенкой с длинными зубцами, то возбуждение токов Фуко будет сильно затруднено. Маятник будет колебаться в магнитном поле почти без затухания. Этот опыт объясняет, почему сердечники электромагнитов и рамы трансформаторов делают не из сплошного куска железа, а из многих листов, наложенных друг на друга. В результате токи Фуко возбуждаются слабо и сильно уменьшается вредное влияние джоулева тепла, выделяемого ими.
Теория.
Токи Фуко − индукционные токи, возникающие в массивных проводниках в переменном магнитном поле, называются токами Фуко. Иногда они играют полезную роль, а иногда вредную.

 Токи Фуко играют полезную роль в роторе асинхронного двигателя, приводимого в движение вращающимся магнитным полем, поскольку само осуществление принципа работы асинхронного двигателя требует возникновения токов Фуко. Являясь токами проводимости, токи Фуко рассеивают часть энергии на выделение джоулевой теплоты.

Эта потеря энергии в роторе асинхронного двигателя является бесполезной, но с ней приходится мириться, избегая лишь чрезмерного перегревания ротора.

Но одновременно с этим в сердечниках электромагнитов асинхронного двигателя, выполненных обычно из ферромагнетиков, являющихся проводниками, также возникают токи Фуко, которые не имеют никакого значения для принципа работы электромагнитов, но нагревают эти сердечники, ухудшая тем самым их характеристики. С ними необходимо бороться, как с вредным фактором.

Борьба заключается в том, что сердечники изготовляют из тонких пластин, отделенных одна от другой слоями изолятора, причем их устанавливают так, чтобы токи Фуко были направлены поперек пластин. Благодаря этому при достаточно малой толщине пластин токи Фуко не могут развиваться и имеют незначительную объемную плотность.

Джоулева теплота, выделяемая токами Фуко, полезно используется в процессах разогрева или даже плавки металлов, когда это оказывается более выгодным или целесообразным по сравнению с другими методами разогрева. Если производить разогрев металла токами очень высокой частоты, то в результате скин-эффекта раскаляется только поверхностный слой проводника.

(б, в) Сплошной кусок металла, находящийся в переменном магнитном поле, представляет собой проводник сопротивления, вследствие чего сила индукционных токов достигает в нем больших значений.

 Так как ЭДС индукции пропорциональна быстроте изменения потока магнитной индукции, то величина токов Фуко тем больше, чем быстрее меняется то магнитное поле, в которое внесен данный проводник.

Важно

Поэтому возникновение токов Фуко легче наблюдать, если внести проводник в полость соленоида, по обмотке которого пропускается быстро переменный ток, вызывающий также быстро меняющееся по величине магнитное поле.

В этом случае токи Фуко в массивных хорошо проводящих телах достигают такой силы, что выделяющегося тепла оказывается достаточно, чтобы раскалить тело. Этот метод широко используется в вакуумной технике для прогрева внутри откачиваемого прибора металлических частей для их обезгаживания. Этот же способ употребляется для плавки металлов под вакуумом.

В кусках достаточно толстых, т. е. имеющих большие размеры в направлении, перпендикулярном к направлению индукционного тока, вихревые токи вследствие малости сопротивления могут быть очень большими и вызывать очень значительное нагревание.

Если, например, поместить внутрь катушки массивный металлический сердечник и пропустить по катушке переменный ток, который 100 раз в секунду изменяет свое направление и силу, доходя до нуля и вновь усиливаясь, то этот сердечник нагреется очень сильно.

Нагревание это вызывается индукционными (вихревыми) токами, возникающими вследствие непрерывного изменения магнитного потока, пронизывающего сердечник.

Если же этот сердечник сделать из отдельных тонких проволок, изолированных друг от друга слоем лака или окислов, то сопротивление сердечника в направлении, перпендикулярном к его оси, т. е. сопротивление для вихревых токов, возрастет, и нагревание значительно уменьшится.

Этим приемом − разделением сплошных кусков железа на тонкие изолированные друг от друга слои − постоянно пользуются во всех электрических машинах для уменьшения нагревания их индукционными токами, возникающими в переменном магнитном поле. С другой стороны, токи Фуко иногда используются в так называемых индукционных печах для сильного нагревания или даже плавления металлов.

Трансформаторы.
 Однако во многих случаях нагревание, вызываемое токами Фуко, является вредным. К таким случаям относится нагревание сердечников трансформаторов и вообще металлических сердечников всякого рода обмоток, по которым идет переменный ток.

Чтобы избежать такого нагревания, сердечники делают слоистыми, отделяя слои друг от друга тонкой прослойкой изоляции, расположенной перпендикулярно к направлению токов Фуко.

 Появление ферритов (магнитных материалов с большим электрическим сопротивлением) сделало возможным изготовление сердечников сплошными.

 (в) В трансформаторах малой мощности магнитопровод собирают из пластин П-, Ш- и О- образной формы (рис. а, б, в).

 Широкое применение получили магнитопроводы, навитые из узкой ленты электротехнической стали или из специальных железоникелевых сплавов типа пермаллой. Их можно использовать для стержневых, броневых, тороидальных и трёхфазных трансформаторов (г, д, е, ж).

Читайте также:  Выдержит ли проводка индукционную плиту 5 квт, если выделено 12 квт?

Скин-эффект.
 Токи Фуко могут возникать и в самом проводнике, по которому течет переменный ток. Появление таких токов ведет к особому поверхностному эффекту (называемому также скин-эффектом от английского слова skin, что значит кожа).

Если переменный ток идет по цилиндрическому проводнику, то в моменты увеличения тока индукционные токи Фуко будут направлены как показано на рисунке.

 Эти токи направлены у поверхности проводника в направлении первичного электрического тока, а у оси проводника − навстречу току.

В результате внутри проводника ток ослабнет, у поверхности увеличится. Таким образом, вследствие возникновения индукционных токов Фуко, ток будет распределен неравномерно по сечению проводника.

 При быстропеременных токах плотность тока вблизи оси проводника практически оказывается равной нулю, и весь ток идет по поверхности проводника. Вследствие этого и магнитное поле внутри проводника делается равным нулю. Это явление вызывает увеличение сопротивления проводника, так как по внутренним частям проводника ток не идет.

Совет

Так как эти внутренние части оказываются бесполезными, то в целях экономии металла провода для быстропеременных токов делаются полыми. Токи Фуко приводят также к уменьшению коэффициента самоиндукции проводника. Это можно пояснить на примере цилиндрического проводника.

 В силу скин-эффекта проводники в высокочастотных схемах не имеет смысла делать сплошными. Для уменьшения сопротивления нужно увеличивать их поверхность, а не сечение, т. е. изготовлять проводники в виде трубок. В электропечах этим обстоятельством пользуются, охлаждая трубки катушки, по которым идет ток высокой частоты, с помощью воды, циркулирующей внутри трубок.

Генераторы.
 Генераторы обычно приводятся в движение сравнительно тихоходными водяными турбинами или двигателями внутреннего сгорания. При работе же с паровыми турбинами, вращающимися с частотой 1500 − 3000 оборотов в минуту, применяется несколько иная конструкция ротора (индуктора).

Ротор не имеет выступов, а представляет собой гладкий цилиндр, на наружной поверхности которого в пазах уложена обмотка. При большой частоте вращения это выгоднее, потому что выступы на роторе создают воздушные вихри и увеличивают механические потери.

 Форма полюсных наконечников на выступах ротора специально рассчитывается так, чтобы индуцированная в обмотке ЭДС изменялась со временем по закону синуса, т. е. чтобы форма напряжения и тока, даваемого генератором, была синусоидальной.

 Статор генератора − его неподвижная часть − представляет собой железное кольцо, в пазах которого уложены обмотки якоря. Для уменьшения потерь на токи Фуко это кольцо делается не сплошным, а состоящим из отдельных тонких листов железа, изолированных друг от
друга.

Смотрите еще:
 Качественные задачи и вопросы по физике
 Интересные вопросы.
 Нобелевские лауреаты по физике.

Источник: http://fizportal.ru/node/4276

Токи Фуко

Токами Фуко (или вихревыми токами) называют токи, имеющие индукционную природу, которые появляются в массивных проводниках в переменном магнитном поле. Замкнутые цепи вихревых токов появляются в глубине самого проводника.

Электросопротивление массивного проводника невелико, следовательно, токи Фуко могут достигнуть большого значения. Сила вихревых токов зависит от формы и свойств материала проводника, направления переменного магнитного поля, скорости, с которой изменяется магнитный поток.

Распределение токов Фуко в проводнике может быть очень сложным.

Количество тепла, которое выделяется за $1 с$ токами Фуко пропорционально квадрату частоты изменения магнитного поля.

По закону Ленца, токи Фуко выбирают такие направления, чтобы своим воздействовать причину, которая их вызывает. Значит, если проводник движется в магнитном поле, то он должен испытывать сильное торможение, которое вызвано взаимодействием токов Фуко и магнитного поля.

Приведем пример возникновения оков Фуко. Медный диск диаметром $5 см$, толщиной $6 мм$ заставим падать в узком зазоре между полюсами электромагнита. Если магнитное поле отключено, диск быстро падает. Включим электромагнит. Поле должно быть большим (порядка $0,5Тл$). Падение диска станет медленным и будет напоминать движение в очень вязкой среде.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Применение токов Фуко

Токи Фуко играют полезную роль в роторе асинхронного двигателя, который приводится во вращательное движение магнитным полем. Сама реализация принципа работы асинхронного двигателя требует появления токов Фуко.

Токи Фуко используют при демпфировании подвижных частей гальванометров, сейсмографов и ряда других приборов. Так, на подвижную часть прибора устанавливают пластинку – проводник в виде сектора. Она вводится в промежуток между полюсами сильного постоянного магнита.

Когда пластинка движется, в ней появляются токи Фуко, это вызывает торможение системы. Причем торможение появляется только тогда, когда пластинка движется. Следовательно, подобного рода успокаивающее устройство не мешает точному приходу системы в состояние равновесия.

Обратите внимание

Теплоту, которая выделяется токами Фуко, используют в процессах разогрева. Так, плавка металлов с использованием токов Фуко является весьма выгодной в сравнении с другими методами разогрева.

Так называемая индукционная печь представляет собой катушку, по которой идет ток высокой частоты и большой силы. Внутрь катушки помещают проводящее тело, в нем появляются вихревые токи большой интенсивности, которые и разогревают вещество до плавления.

Так проводят плавление металлов в вакууме, что ведет к получению материалов высокой чистоты.

При использовании токов Фуко проводят прогрев внутренних металлических частей вакуумных установок с целью их обезгаживания.

Проблемы, которые вызывают вихревые токи. Скин – эффект

Токи Фуко могут играть не только полезную роль. Вихревые токи являются токами проводимости, и часть энергии рассеивают на выделение джоулевой теплоты. Такая энергия, например, в роторе асинхронного двигателя, который изготавливается, обычно из ферромагнетиков, нагревает сердечники, тем самым ухудшаются их характеристики.

Для борьбы с таким явлением сердечники производят в виде тонких пластин, которые отделяются тонкими слоями изолятора и устанавливают пластины так, чтобы токи Фуко имели направление поперек пластин. При небольшой толщине пластин вихревые токи имеют малую объемную плотность.

С появлением ферритов и веществ с большим магнитосопротивлением стало возможным изготовление сердечников сплошными.

Вихревые токи возникают в проводах, в которых текут переменные токи, причем направление токов Фуко таково, что они ослабляют ток внутри провода и усиливают его около поверхности. Следовательно, быстро изменяющийся ток распределен по сечению провода неравномерно. Такое явление называется скин – эффектом (поверхностным эффектом).

Из-за этого явления внутренняя часть проводника становится бесполезной и в цепях с большой частотой используют трубки в качестве проводников.

Скин – эффект может применяться для разогрева поверхностного слоя металла, что позволяет использовать это явление для закалки металла, причем, изменяя частоту поля, можно проводить закалку на любой необходимой глубине.

Приближенные формулы, которыми можно описать скин-эффект в однородном цилиндрическом проводнике:

Рисунок 1.

Важно

где $R_w$ – эффективное сопротивление проводника радиусом $r$ переменному току с циклической частотой $w$. $R_0$ – сопротивление проводника постоянному току.

где эффективная глубина проникновения переменного тока ($delta $) (расстояние от поверхности проводника, на котором плотность тока уменьшается в $e=2,7 $раз в сравнении с плотностью на его поверхности) равна:

$mu $ – относительная магнитная проницаемость, ${mu }_0$ – магнитная постоянная, $sigma $ – удельная электропроводность проводника для постоянного тока. Чем толще проводник, тем существеннее скин – эффект, тем меньше величины $w$ и $sigma $, при которых его следует учесть.

Пример 1

Задание: В опыте с центробежной машиной к ней прикрепили массивный медный диск, привели этот диск во вращение с большой скоростью. Над диском подвесили (без соприкосновения) магнитную стрелку. Что будет происходить со стрелкой, почему?

Решение:

Магнитная стрелка выступает в роли магнита, который создает магнитное поле, в этом поле вращается медный проводник. Следовательно, в проводнике возникают индукционные токи – токи Фуко.

По правилу Ленца вихревые токи, взаимодействуя с магнитным полем, стремятся остановить вращение диска или в соответствии с третьим законом Ньютона увлечь за собой магнитную стрелку.

Значит, магнитная стрелка, которая висит над диском, будет поворачиваться вслед за ним и закрутит подвес (нить).

Ответ: Магнитная стрелка будет вращаться, причина – вихревые токи.

Пример 2

Задание: Объясните, почему подземный кабель, по которому передается переменный ток нельзя прокладывать вблизи от металлических газовых и водопроводных труб?

Решение:

Под действием переменного тока вокруг кабеля возникает переменное магнитное поле, если в это поле попадает проводник (металлическая труба), то возникнут индукционные вихревые токи. Эти токи вызывают коррозию металлических труб. Кроме того наличие токов в трубах опасно, так как возникает возможность поражения током.

Пример 3

Задание: Маятник, изготовленный из толстой листовой меди, имеет форму усеченного сектора.

Он подвешен на стержне и может совершать свободные колебания вокруг горизонтальной оси в магнитном поле между полюсами сильного электромагнита. В отсутствии магнитного поля маятник совершает колебания практически без затухания.

Опишите колебания маятника в магнитном поле электромагнита. Как заставить маятник колебаться почти без затухания в присутствии магнитного поля?

Решение:

Совет

Если описанный массивный маятник, осуществляющий колебания, поместить в сильное магнитное поле, то в маятнике возникают токи Фуко. Эти токи по правилу Ленца тормозят движения маятника, амплитуда колебаний уменьшается, и сами колебания скоро прекращаются.

Для того чтобы уменьшить вихревые индукционные токи в маятнике, осуществляющем колебания в магнитном поле, можно его сплошной сектор заменить гребенкой с удлинёнными зубцами. Токи Фуко будут уменьшены, и маятник будет совершать колебания практически без затухания.

Источник: https://spravochnick.ru/fizika/toki_fuko/

Вихревые токи

ПодробностиКатегория: ВПросмотров: 2359

ВИХРЕВЫЕ ТОКИ, токи Фуко, токи, возникающие в проводниках, расположенных в вихревом электрическом поле.

По закону индукции скорость уменьшения магнитного потока через данную поверхность (магнитный спад) равна электрическому напряжению вдоль контура, ограничивающего эту поверхность (циркуляции вектора напряженности электрического поля). Т. о.

изменение магнитного потока создает вихревое электрическое поле, не имеющее потенциала и характеризуемое замкнутыми силовыми линиями или, во всяком случае, линиями, не имеющими ни начала ни конца.

Поскольку в этом вихревом поле расположены проводники электричества, в них возникает (индуктируется) ток, плотность которого j, по закону Ома, пропорциональна вектору напряженности электрического поля: j = λ∙E, где λ – удельная проводимость.

С этой точки зрения токи, индуктируемые в обмотках трансформаторов и электрических машин, тоже являются вихревыми токами; однако, благодаря сравнительно малому сечению применяемых проводов и специальному их расположению, индуктируемые в этих проводах токи легко вычисляются и м. б. направлены желательным для эксплуатации образом.

Поэтому принято называть вихревыми токами только такие индуктированные токи, которые замыкаются в вихревом электрическом поле. Токи, индуктируемые в обмотках электрических машин и трансформаторов, выводятся наружу, за пределы вихревого электрического поля. Это позволяет сравнительно просто рассчитывать электрическую цепь таких токов, вводя понятие ЭДС, индуктируемой в той части цепи, которая расположена в вихревом поле. Вместо действительного вихревого поля рассматривается эквивалентное ему потенциальное поле, в котором распределены ЭДС с таким расчетом, чтобы их сумма во всей цепи как раз равнялась скорости уменьшения магнитного потока. Тогда сумму ЭДС в этой цепи можно считать равной омическому падению напряжения во всей цепи.

Такой упрощенный расчет невозможен при определении вихревых токов в массивных проводах. Здесь введение ЭДС вместо рассмотрения вихревого поля только осложнило бы расчет.

Читайте также:  Зачем нужна система уравнивания потенциалов?

Поэтому для определения вихревых токов приходится интегрировать дифференциальные уравнения Максвелла в данной среде, с учетом граничных условий задачи.

Обратите внимание

Там, где этот расчет оказывается слишком сложным, пользуются эмпирическими формулами и определяют соответствующие коэффициенты опытным путем.

Возникновение вихревых токов во многих случаях нежелательно, потому что они нагревают, по закону Джоуля, проводники. Кроме того они искажают магнитные поля и, по закону Ленца, ослабляют в машинах полезный магнитный поток, создавая необходимость увеличивать соответствующие ампервитки возбуждения.

Можно провести аналогию между вихревыми токами и трением. С одной стороны, трением пользуются для целого ряда движений (без трения невозможна ходьба), с другой – трение создает добавочные потери энергии. Так и вихревые токи.

Ими пользуются для получения во вторичных обмотках машин и трансформаторов полезных токов, но вместе с тем вихревые токи возникают во всех металлических частях машин и создают добавочные потери. Изучение вихревых токов тесно связано с изучением вытеснения тока или скин-эффекта в проводниках, т. к.

в массивных телах плотность тока распределяется неравномерно, благодаря тому, что энергия электромагнитных волн поглощается по мере проникновения в толщу тела.

Потери в листовой стали. В железе трансформаторов и электрических машин пульсирует магнитный поток. Чтобы уменьшить потери от вихревых токов, применяют пакеты, сложенные из тонких листов динамной стали, оклеенных для изоляции бумагой. Магнитные линии проходят параллельно поверхности листов, например, в направлении вектора В (фиг. 1).

Тогда возникает вихревое электрическое поле в направлении, перпендикулярном В, причем плотность электрического тока возрастает при перемещении от середины листа к его поверхности. На фиг.

1 стрелками изображены значения по величине и по направлению плотности тока в различных точках линии аb. Потери на теплоту Джоуля в 1 см3 измеряются мощностью ϱ∙j2. Следовательно, для уменьшения этих потерь надо выбирать как можно более тонкие листы.

Важно

На практике берут листы толщиной Δ в 1 мм, 0,5 мм и 0,35 мм и выражают мощность V, поглощаемую вихревыми токами в 1 кг листовой стали, формулой:

где f – частота, В – индукция и σ – опытный множитель, зависящий от электрического сопротивления материала, от толщины листов и от формы кривой, по которой изменяется индукция. Так, например, при толщине листа Δ = 0,5 мм, для обыкновенной динамной стали σ = 5,6, а для стали с примесью кремния σ = 1,2.

При толщине Δ = 0,35 мм, σ соответственно = 3,2 и 0,6. При больших частотах или при толстых листах формула (1) нуждается в поправке, потому что вихревые токи деформируют поле, и тогда индукция распространяется по величине и по фазе неравномерно в толще листа.

Вводим приведенную толщину листа ξ = α∙Δ, где

(ϱ в Ом∙мм2/м)

Так, например, при μ = 3000, ϱ = 0,15 Ом∙мм2/мин, Δ = 0,5 мм,, f = 50 сек-1 имеем ξ = 0,99. Отношение индукции В в любой точке на расстоянии х см от средней плоскости листа к индукции Bs на поверхности определяется по следующей формуле:

На фиг. 2 изображены значения B/Bs в зависимости от х при различных значениях ξ. Горизонтальные линии изображают соответствующие значения отношения Bm/Bs, где Вm – среднее значение индукции по толщине листа.

При той же самой средней индукции потери от вихревых токов увеличиваются при больших частотах в отношении

Уже при ξ > 3 можно считать km ≈ 3/ξ, так что потери в единице объема выразятся формулой:     

где

или

При тех же частотах удобнее относить потери не к единице объема, а к единице поверхности. Тогда, если распределить потери на обе поверхности листа,

Совет

V0 не зависит от толщины листа, потому что почти все вихревые токи вытеснены на поверхность листа. В этом случае формула (5) применима и к массивному железному цилиндру, в котором пульсирует магнитный поток в осевом направлении.

Приведенные формулы нуждаются еще в поправке, потому что на самом деле проницаемость μ зависит от индукции, но эту поправку весьма трудно вычислить. Обыкновенно берут некоторое среднее значение для μ.

Вторую поправку следует ввести, если колебания индукции происходят не по закону синуса.

Тогда кривую колебаний разлагают на отдельные гармонические колебания и вычисляют потери для каждой гармоники в отдельности.

В якоре электрических машин нельзя считать магнитное поле однородным. При расчете вихревых токов следует принимать во внимание искривление линий индукции и линий тока. В этом случае потери в якоре от вихревых токов определяются по формуле:

Здесь М – масса железа якоря, V – потери, определяемые по формуле (1), где f – частота перемагничивания и В – средняя индукция в якоре. Наконец, поправочный множитель kw зависит от числа полюсов р и от отношения r/τ – радиальной толщине потока к полюсному делению. На фиг. 3 указаны значения kw (вычисленные Рихтером).

Аналогично вычисляются потери от вихревых токов в зубцах якоря, в полюсных башмаках и т. п. В проводах, расположенных в пазах электрических машин, тоже появляются вихревые токи, связанные с вытеснением тока на поверхность проводников. Это обстоятельство также создает увеличение потерь в проводах.

Вихревые токи при коммутации. При перемене режима вихревые токи тоже играют большую роль. Рассмотрим, например, простой случай выключения или включения электромагнита с массивным сердечником. Решение таких задач рассматривается в электродинамике.

Обратите внимание

Можно, однако, физически представить себе, что каждое изменение магнитного потока создает вихревые токи, охватывающие этот поток. Явление выключения электромагнита можно рассматривать следующим образом.

Магнитное поле в сердечнике, которое до выключения было постоянным в пространстве и во времени, распадается на ряд отдельных полей, распределенных волнообразно в пространстве, причем каждое поле исчезает со своим коэффициентом затухания. Мы предполагаем, что электромагнит состоит из двух стержней, ярма и притягиваемого якоря.

Тогда, если δ будет приведенная полная длина воздушного зазора, и Δ будет активная длина магнитных линий в железе, то, применяя дифференциальные уравнения Максвелла и пренебрегая токами смещения, мы получим для магнитной индукции дифференциальное уравнение:

Возьмем для упрощения магнитный стержень прямоугольного сечения. Тогда уравнение (6) принимает вид:

и может быть проинтегрировано так:

где множитель затухания

здесь n и m могут иметь любые целые значения, а Вn,m зависит от граничных условий; так, например, если до выключения поле В0 было постоянным в пространстве и во времени, то

и в частности

Высшие гармоники Вn,m очень быстро уменьшаются с возрастанием порядкового номера, и мы должны учитывать главным образом основную волну; ее амплитуда на 62% больше первоначального постоянного поля В0. Фиг. 4 показывает распределение индукции в магнитном стержне для различных моментов времени.

Мы видим, что в середине магнита поле остается дольше всего. При включении, наоборот, поле только постепенно проникает внутрь магнита, как видно из фиг. 5, дающей распределение индукции в магнитном стержне для различных моментов времени.

Полезные применения. Вихревые токи применяются для торможения, когда, например, электромагнит помещают против скользящей или вращающейся ферромагнитной детали. Т. о. выполняют электромагнитное успокоение измерительных приборов, электромагнитное торможение двигателей.

Вихревые токи применяются также в металлургических печах большой частоты, для нагревания руды. Наконец, вихревые токи применяются и в двигателях, например, в предложенном К. И. Шенфером асинхронном двигателе, якорь которого состоит из массивного железного цилиндра.

Источник: Мартенс. Техническая энциклопедия. Том 3 – 1928 г.

Источник: https://azbukametalla.ru/entsiklopediya/v/vikhrevye-toki.html

Вихревые токи

В электрических аппаратах, приборах и машинах металлические детали иногда движутся в магнитном поле или неподвижные металлические детали пересекаются силовыми линиями меняющегося по величине магнитного поля. В этих металлических деталях индуктируется ЭДС самоиндукции.

Под действием этих э. д. с. в массе металлической детали протекают вихревые токи (токи Фуко), которые замыкаются в массе, образуя вихревые контуры токов. Вихревые токи порождают свои собственные магнитные потоки, которые, по правилу Ленца, противодействуют магнитному потоку катушки и ослабляют его. Кроме того, они вызывают нагрев сердечника, что является бесполезной тратой энергии.

Пусть имеется сердечник из металлического материала. Поместим на этот сердечник катушку, по которой пропустим переменный ток. Вокруг катушки окажется переменный магнитный ток, пересекающий сердечник.

Важно

При этом в сердечнике станет наводиться индуцированная ЭДС, которая, в свою очередь, вызывает в сердечнике токи, называемые вихревыми. Эти вихревые токи нагревают сердечник.

Так как электрическое сопротивление сердечника невелико, то наводимые в сердечниках индуцированные токи могут оказываться достаточно большими, а нагрев сердечника – значительным.

Впервые вихревые токи были обнаружены французским учёным Д.Ф. Араго (1786 – 1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции.

Вихревые токи были подробно исследованы французским физиком Фуко (1819—1868) и названы его именем. Он назвал явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.

Способы уменьшения токов Фуко

Мощность, затрачиваемая на нагрев сердечника вихревыми токами, бесполезно снижает КПД технических устройств электромагнитного типа.

Чтобы уменьшить мощность вихревых токов, увеличивают электрическое сопротивление магнитопровода, для этого сердечники набирают из отдельных тонких (0,1- 0,5 мм) пластин, изолированных друг от друга с помощью специального лака или окалины. В материал сердечника вводят специальные добавки, также увеличивающие его электрическое сопротивление.

Сердечники некоторых катушек (бобин) набирают из кусков отожженной железной проволоки. Полоски железа располагают параллельно линиям магнитного потока.

Вихревые же токи, протекающие в плоскостях, перпендикулярных направлению магнитного потока, ограничиваются изолирующими прокладками. Для магнитопроводов приборов и устройств, работающих на высокой частоте, применяют магнетодиэлектрики.

Совет

Чтобы снизить вихревые токи в проводах, последние изготавливают в виде жгута из отдельных жил, изолированных друг от друга.

Лицендрат – это система переплетенных медных проводов, в которой каждая жила изолирована от соседних. Лицендрат предназначен для использования на высокочастотных токах для предотвращения возникновения паразитных токов и токов Фуко.

Применение токов Фуко

Полезное применение вихревые токи нашли в устройстве магнитного тормоза диска электрического счетчика. Вращаясь, диск пересекает магнитные силовые линии постоянного магнита. В плоскости диска возникают вихревые токи, которые, в свою очередь, создают свои магнитные потоки в виде трубочек вокруг вихревого тока. Взаимодействуя с основным полем магнита, эти потоки тормозят диск.

В ряде случаев, применяя вихревые токи, можно использовать технологические операции, которые невозможно применить без токов высокой частоты. Например, при изготовления вакуумных приборов и устройств из баллона необходимо тщательно откачать воздух и иные газы.

Однако в металлической арматуре, находящейся внутри баллона, имеются остатки газа, которые можно удалить только после заваривания баллона.

Для полного обезгаживания арматуры вакуумный прибор помещают в поле высокочастотного генератора, в результате действия вихревых токов арматура нагревается до сотен градусов, остатки газа при этом нейтрализуются.

Вихревые токи находят полезное применение также при индукционной плавке металлов и поверхностной закалке токами высокой частоты.

Источник: http://xn--e1agagdinprd2fvas.xn--p1ai/2013-10-14-12-08-40

Ссылка на основную публикацию
Adblock
detector