Что такое фоторезисторы, как они работают и где используются

Фоторезистор определение и виды, как работают, преимущества и недостатки

В статье расскажем про фоторезистор, его определение и виды, как он работает, преимущества и недостатки. А также познавательное видео, где подробно рассказывается про фоторезистор и где он используется.

Название фоторезистора представляет собой комбинацию слов: фотон (легкие частицы) и резистор. Фоторезистор — это тип резистора, сопротивление которого уменьшается при увеличении интенсивности света. Другими словами, поток электрического тока через фоторезистор увеличивается, когда интенсивность света увеличивается.

Фоторезисторы также иногда называют LDR (светозависимым резистором), полупроводниковым фоторезистором, фотопроводником или фотоэлементом. Фоторезистор меняет свое сопротивление только при воздействии света.

Как работает фоторезистор?

Когда свет падает на фоторезистор, некоторые из валентных электронов поглощают энергию света и разрушают связь с атомами. Валентные электроны, которые разрушают связь с атомами, называются свободными электронами.

Когда энергия света, приложенная к фоторезистору, сильно увеличивается, большое количество валентных электронов получает достаточно энергии от фотонов и разрушает связь с родительскими атомами. Большое количество валентных электронов, которые нарушают связь с родительскими атомами, попадет в зону проводимости.

Электроны, присутствующие в зоне проводимости, не принадлежат ни одному атому. Следовательно, они свободно перемещаются из одного места в другое. Электроны, которые свободно перемещаются из одного места в другое, называются свободными электронами.

Обратите внимание

Когда валентный электрон покинул атом, в определенном месте атома, из которого вышел электрон, создается пустое место. Эта место называется дырой. Следовательно, свободные электроны и дырки генерируются в виде пар.

Свободные электроны, которые свободно перемещаются из одного места в другое, переносят электрический ток. Аналогичным образом, дырки, движущиеся в валентной зоне, переносят электрический ток.

 Аналогично, и свободные электроны, и дырки будут нести электрический ток.

 Количество электрического тока, протекающего через фоторезистор, зависит от количества генерируемых носителей заряда (свободных электронов и дырок).

Когда энергия света, приложенная к фоторезистору, увеличивается, число носителей заряда, генерируемых в фоторезисторе, также увеличивается. В результате электрический ток, протекающий через фоторезистор, увеличивается.

Увеличение электрического тока означает снижение сопротивления. Таким образом, сопротивление фоторезистора уменьшается, когда интенсивность приложенного света увеличивается.

Фоторезисторы делаются из полупроводника с высоким сопротивлением, такого как кремний или германий. Они также сделаны из других материалов, таких как сульфид кадмия или селенид кадмия.

При отсутствии света фоторезисторы действуют как материалы с высоким сопротивлением, тогда как при наличии света фоторезисторы действуют как материалы с низким сопротивлением.

Советуем вам посмотреть лучшее видео на тему фоторезистора, в котором вы узнаете очень подробно принцип работы фоторезистора:

Типы фоторезисторов на основе материала, из которого они изготовлены

Фоторезисторы делятся на два типа в зависимости от материала, из которого они изготовлены:

  • Внутренний фотоэффект
  • Внешний фотоэффект

Фоторезистор с внутренним фотоэффектом

Собственные фоторезисторы изготавливаются из чистых полупроводниковых материалов, таких как кремний или германий. Внешняя оболочка любого атома способна содержать до восьми валентных электронов.

 Однако в кремнии или германии каждый атом состоит только из четырех валентных электронов. Эти четыре валентных электрона каждого атома образуют четыре ковалентных связей с соседними четырьмя атомами, чтобы полностью заполнить внешнюю оболочку.

 В результате ни один электрон не остается свободным.

Важно

Когда мы применяем световую энергию к фоторезистору с внутренним эффектом, только небольшое количество валентных электронов получает достаточно энергии и освобождается от родительского атома. Следовательно, генерируется небольшое количество носителей заряда. В результате через внутренний фоторезистор протекает только небольшой электрический ток.

Мы уже знали, что увеличение электрического тока означает снижение сопротивления. В фоторезисторах с внутренним фотоэффектом сопротивление несколько уменьшается с увеличением энергии света. Следовательно, внутренние фоторезисторы менее чувствительны к свету. Поэтому они не надежны для практического применения.

Фоторезистор с внешним фотоэффектом

Фоторезисторы с внешним фотоэффектом изготовлены из внешних полупроводниковых материалов. Рассмотрим пример внешнего фоторезистора, изготовленного из комбинации атомов кремния и примеси фосфора.

Каждый атом кремния состоит из четырех валентных электронов, а каждый атом фосфора состоит из пяти валентных электронов. Четыре валентных электрона атома фосфора образуют четыре ковалентные связи с соседними четырьмя атомами кремния.

 Однако пятый валентный электрон атома фосфора не может образовывать ковалентную связь с атомом кремния, поскольку атом кремния имеет только четыре валентных электрона. Следовательно, пятый валентный электрон каждого атома фосфора освобождается от атома.

 Таким образом, каждый атом фосфора генерирует свободный электрон.

Свободный электрон, который генерируется, сталкивается с валентными электронами других атомов и делает их свободными. Аналогичным образом, один свободный электрон генерирует несколько свободных электронов. Следовательно, добавление небольшого количества примесных (фосфорных) атомов генерирует миллионы свободных электронов.

В внешних фоторезисторах у нас уже есть большое количество носителей заряда. Следовательно, обеспечение небольшого количества световой энергии генерирует еще большее количество носителей заряда. Таким образом, электрический ток быстро увеличивается.

Увеличение электрического тока означает снижение сопротивления. Следовательно, сопротивление внешнего фоторезистора быстро уменьшается с небольшим увеличением приложенной световой энергии. Внешние фоторезисторы надежны для практического применения.

Символ фоторезистора на схеме

Символ американского стандарта и символ международного фоторезистора показаны на рисунке ниже.

Преимущества и недостатки фоторезистора

Преимущества фоторезистора

  • Маленький по размеру
  • Бюджетный
  • Легко переносить из одного места в другое.

Недостатки фоторезистора

  • Точность фоторезистора очень низкая.

Применение фоторезисторов

Фоторезисторы используются в уличных фонарях для контроля, когда свет должен включаться и когда свет должен выключаться. Когда окружающий свет падает на фоторезистор, он выключает уличный свет. Когда света нет, фоторезистор вызывает включение уличного освещения. Это уменьшает потери электроэнергии.

Они также используются в различных устройствах, таких как сигнальные устройства, солнечные уличные фонари, ночники и радиочасы.

Пример схемы датчика освещенности

Если требуется базовый датчик освещенности, можно использовать схему LDR, такую ​​как схема на рисунке. Светодиод загорается, когда интенсивность света, достигающего резистора LDR, достаточна. Переменный резистор 10K используется для установки порога, при котором светодиод включится.

 Если индикатор LDR ниже пороговой интенсивности, светодиод останется в выключенном состоянии. В реальных приложениях светодиод будет заменен реле или выход может быть подключен к микроконтроллеру или другому устройству.

 Если требуется датчик темноты, где светодиод будет светиться при отсутствии света, необходимо заменить LDR и два резистора 10К.

Аудио компрессоры

Аудио компрессоры — это устройства, которые уменьшают усиление аудио усилителя, когда амплитуда сигнала превышает установленное значение. Это сделано для усиления тихих звуков при одновременном предотвращении обрыва громких звуков.

 Некоторые компрессоры используют LDR и небольшую лампу (светодиод или электролюминесцентную панель), подключенную к источнику сигнала для создания изменений в усилении сигнала.

 Считается, что этот метод добавляет более плавные характеристики к сигналу, потому что время отклика света и резистора смягчает атаку и освобождение. Задержка времени отклика в этих приложениях составляет порядка 0,1 с.

Источник: https://meanders.ru/fotorezistor-opredelenie-i-vidy-kak-rabotajut-preimushhestva-i-nedostatki.shtml

Фоторезисторы. Виды и работа. Применение и особенности

Фоторезисторы — это резисторы, у которых меняется сопротивление в зависимости от действия света на светочувствительную поверхность. Сопротивление не зависит от величины напряжения, в отличие от обычного резистора.

В основном фотосопротивления применяются для индикации или отсутствия света. В полной темноте сопротивление фоторезистора имеет большую величину, достигающую иногда до 1 мегаома.

При воздействии на датчик (чувствительную часть фоторезистора) светового потока, его сопротивление в значительной степени снижается, и зависит от интенсивности освещенности.

Величина сопротивления при этом может упасть до нескольких Ом.

Совет

Длина световой волны оказывает влияние на чувствительность фотосопротивления. Они применяются в различных устройствах, но не являются такими популярными, как фототранзисторы и фотодиоды. В некоторых зарубежных странах запрещено применение фотосопротивлений, так как в них содержится кадмий или свинец, вредные по экологическим требованиям.

Быстродействие фоторезисторов незначительное, поэтому они действуют только на низких частотах. В новых конструкциях устройств фоторезисторы редко применяются. Их можно встретить в основном при ремонте старых устройств.

Для проверки фотосопротивления к нему подключают мультитестер. Без света его значение сопротивления должно быть значительным, а при его освещении оно сильно падает.

 

Виды и принцип действия

По материалам изготовления фоторезисторы делятся на виды:

  • С внутренним фотоэффектом.
  • С внешним фотоэффектом.

При изготовлении фотосопротивлений с внутренним фотоэффектом применяют нелегированные вещества: германий или кремний.

При попадании на чувствительную часть фотоны воздействуют на электроны и заставляют их двигаться в зону проводимости. В итоге в материале возникает значительное число электронов, вследствие чего повышается электропроводность, а значит и снижается сопротивление.

Фоторезисторы с возникновением внешнего фотоэффекта изготавливают из смешанных материалов, в которые входят легирующие добавки.

Эти вещества создают обновленную энергетическую зону сверху валентной зоны, насыщенной электронами, нуждающимися в меньшем количестве энергии для осуществления перехода в проводимую зону, с помощью энергетической щели малого размера. В результате фотосопротивление становится чувствительным к разной длине световой волны.

Несмотря на вышеописанные особенности этих видов, оба вида снижают сопротивление при освещении. При повышении интенсивности освещения снижается сопротивление. Поэтому, получается обратная зависимость сопротивления от света, причем нелинейная.

На электрических схемах фотосопротивления обозначаются:

 

Чувствительность и длина световой волны

Длина волны света оказывает влияние на чувствительность фотосопротивления. Если величина длины световой волны выходит за пределы диапазона работы, то освещенность уже не оказывает влияния на такой резистор, и он становится нечувствительным в этом интервале длин световых волн.

Разные материалы обладают различными спектральными графиками отклика волны.

Фотосопротивления с внешней зависимостью чаще всего используются для значительной длины волны, с приближением к инфракрасному излучению.

При эксплуатации светового резистора в этом диапазоне следует быть осторожным, во избежание чрезмерного нагрева, который влияет на показания измерения сопротивления в зависимости от степени нагревания.

Чувствительность фотосопротивления

Фоторезисторы обладают меньшей чувствительностью, по сравнению с фототранзисторами и фотодиодами, которые являются полупроводниковыми приборами, с управлением заряженными частицами от светового луча, посредством р-n перехода. У фотосопротивлений нет полупроводникового перехода.

При нахождении интенсивности света в стабильном диапазоне, сопротивление фоторезистора может все равно меняться в значительной степени из-за изменения величины температуры, так как она также оказывает большое влияние на сопротивление. Это свойство не позволяет использовать фоторезистор для измерения точной интенсивности света.

Инертность

Еще одним уникальным свойством обладает фотосопротивление. Оно состоит в том, что существует время задержки между изменением сопротивления и освещения, что называется инертностью прибора.

Для значительного падения сопротивления от воздействия луча света необходимо затратить время, равное около 10 миллисекунд. При обратном действии для восстановления значения сопротивления понадобится около 1 секунды.

Благодаря этому свойству такой резистор не применяется в устройствах с необходимостью учета резких скачков освещенности.

Свойства и конструктивные особенности

Фотопроводность впервые обнаружили у элемента Селена. Затем были найдены и другие материалы с подобными свойствами. Фоторезисторы из сульфида кадмия являются наиболее популярными и имеют обозначение СDS-фоторезистора. Сегодня фотосопротивления производятся и из антимонида индия, сульфида свинца, селенида свинца.

Для производства фотосопротивлений из сульфида кадмия, порошок высокой степени очистки смешивают с веществами инертного действия. Далее, смесь спрессовывают и спекают.

Обратите внимание

На основание с электродами в вакууме напыляют светочувствительный слой в форме извилистой дорожки. Далее, это напыленное основание размещают в пластиковую или стеклянную оболочку, во избежание предотвращения попадания пыли и грязи на чувствительный элемент.

Спектральный график отклика чувствительного сульфида кадмия сочетается с временем отклика глаза человека. Длина волны света наибольшей чувствительности равна 600 нанометров. Это соответствует видимому спектру. Устройства с содержанием кадмия или свинца запрещены во многих зарубежных странах.

Сфера использования фоторезисторов

Такой вид светочувствительных сопротивлений применяется в виде датчиков света, если необходимо определять отсутствие или наличие света, либо фиксацию значения интенсивности освещения. Таким примером служит автоматическая система включения освещения улиц, а также работа фотоэкспонометра.

Читайте также:  Обзор электрического отопления плинтусного типа

Световое реле для освещения улиц

В виде примера на схеме изображено уличное фотореле освещения. Эта система включает освещение улиц в автоматическом режиме, при наступлении темного времени суток, и отключает его при наступлении светлого времени. Такую схему можно применять для любых автоматических систем освещения.

При падении луча света на фоторезистор, его сопротивление снижается, становится значительным падение напряжения на переменном сопротивлении R2, транзистор VТ1 открывается.

Коллектор этого транзистора соединен с базой VТ2 транзистора, который в это время закрыт, и реле отключено. При наступлении темноты сопротивление фоторезистора повышается, напряжение на переменном сопротивлении снижается, а транзистор VТ1 закрывается.

Транзистор VТ2 открывается и выдает напряжение на реле, подключающее лампу освещения.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/fotorezistory/

Фоторезистор. Принцип работы, характеристики

Фоторезистор (фотосопротивление, LDR) – это резистор, электрическое сопротивление которого изменяется под влиянием световых лучей, падающих на светочувствительную поверхность и не зависит от приложенного напряжения, как у обычного резистора.

Фоторезисторы чаще всего используются для определения наличия или отсутствия света или для измерения интенсивности света. В темноте, их сопротивление очень высокое, иногда доходит до 1 МОм, но когда датчик LDR подвергается воздействию света, его сопротивление резко падает, вплоть до нескольких десятков ом в зависимости от интенсивности света.

Фоторезисторы имеют чувствительность, которая изменяется с длиной волны света. Они используются во многих устройствах, хотя уступают по своей популярности фотодиодам и фототранзисторам. Некоторые страны запретили LDR из-за содержащегося в них свинца или кадмия по соображению экологической безопасности.

Характеристики фоторезистора

Виды фоторезисторов и принцип работы

На основании материалов, используемых при производстве, фоторезисторы могут быть разделены на две группы: с внутренним и внешним фотоэффектом. В производстве фоторезисторов с внутренним фотоэффектом используют нелегированные материалы, такие как кремний или германий.

Фотоны, которые попадают на устройство, заставляют электроны перемещаться из валентной зоны в зону проводимости. В результате этого процесса появляется большое количество свободных электронов в материале, тем самым улучшается электропроводность и, следовательно, уменьшается сопротивление.

Фоторезисторы с внешним фотоэффектом производятся из материалов, с добавлением примеси, называемой легирующая добавка.

Важно

Легирующая добавка создает новую энергетическую зону поверх существующей валентной зоной, заселенную электронами.

Этим электронам требуется меньше энергии, чтобы совершить переход в зону проводимости благодаря меньшей энергетической щели. Результат этого – фоторезистор чувствителен к различным длинам волн света.

Несмотря на все это, оба типа демонстрируют уменьшение сопротивления при освещении. Чем выше интенсивность света, тем больше падает сопротивление. Следовательно, сопротивлением фоторезистора является обратная, нелинейная функция интенсивности света.

Фоторезистор на схемах обозначается следующим образом:

Чувствительность фоторезистора от длины волны

Чувствительность фоторезистора зависит от длины волны света. Если длина волны находится вне рабочего диапазона, то свет не будет оказывать никакого действия на LDR. Можно сказать, что LDR не чувствителен в этом диапазоне длин волн света.

Различные материалы имеют различные уникальные спектральные кривые отклика волны по сравнению с чувствительностью.

Внешне светозависимые резисторы, как правило, предназначены для больших длин волн, с тенденцией в сторону инфракрасного (ИК).

При работе в ИК-диапазоне, необходимо соблюдать осторожность, чтобы избежать перегрева, который может повлиять на измерения из-за  изменения сопротивления фоторезистора от  теплового эффекта.

На следующем рисунке показана спектральная характеристика фотопроводящих детекторов, изготовленные из различных материалов.

Чувствительность фоторезистора

Фотрезисторы имеют более низкую чувствительность, чем фотодиоды и фототранзисторы. Фотодиоды и фототранзисторы — полупроводниковые устройства, в которых используется свет для управления потоком электронов и дырок через PN-переход, а фоторезисторы лишеные этого PN-перехода.

Если интенсивность светового потока находиться на стабильном уровне, то сопротивление по-прежнему может существенно изменяться вследствие изменения температуры, поскольку LDR также чувствительны и к изменениям температуры. Это качество фоторезистора делает его непригодным для точного измерения интенсивности света.

Инертность фоторезистора

Еще одно интересное свойство фоторезистора заключается в том, что существует инертность (время задержки) между изменениями в освещении и изменением сопротивления.

Для того чтобы сопротивление упало до минимума при полном освещении необходимо около 10 мс времени, и около 1 секунды для того, чтобы сопротивление фоторезистора возросло до максимума после его затемнения.

По этой причине LDR не может использоваться в устройствах, где необходимо учитывать резкие перепады освещения.

Конструкция и свойства фоторезистора

Впервые фотопроводимость была обнаружена у Селена, впоследствии были обнаружены и другие материалы с аналогичными свойствами. Современные фоторезисторы выполнены из сульфида свинца, селенида свинца, антимонида индия, но чаще всего из сульфида кадмия и селенида кадмия. Популярные LDR из сульфида кадмия обозначаются как CDS фоторезистор.

Для изготовления фоторезистора из сульфида кадмия, высокоочищенный порошок сульфида кадмия смешивают с инертными связующими материалами. Затем, эту смесь прессуют и спекают.

В вакууме на основание с электродами наносят фоточувствительный слой в виде извилистой дорожки.

Совет

Затем, основание помещается в стеклянную или пластиковую оболочку, для предотвращения загрязнения фоточувствительного элемента.

Спектральная кривая отклика сульфида кадмия совпадает с человеческим глазом. Длина волны пиковой чувствительности составляет около 560-600 нм, что соответствует видимой части спектра. Следует отметить, что устройства, содержащие свинец или кадмий не соответствуют RoHS и запрещены для использования в странах, которые придерживаются законов RoHS.

Примеры применения фоторезисторов

Фоторезисторы чаще всего используются в качестве датчиков света, когда требуется определить наличие или отсутствие света или зафиксировать интенсивность света. Примерами являются автоматы включения уличного освещения и фотоэкспонометры. В качестве примера использования фоторезистора, приведем схему фотореле для уличного освещения.

Фотореле для уличного освещения

Данная схема фотореле автоматически включает уличное освещение, когда наступает ночь и выключает когда светлеет. На самом деле вы можете использовать данную схему для реализации любого типа автоматического включения ночного освещения.

При освещении фоторезистора (R1), его сопротивление уменьшается, падение напряжения на переменном резисторе R2 будет высоким, вследствие чего транзистор VT1 открывается. Коллектор VT1 (BC107) соединен с базой транзистора VT2 (SL100).

Транзистор VT2 закрыт и реле обесточено. Когда наступает ночь, сопротивление LDR увеличивается, напряжение на переменном резисторе R2, падает, транзистор VT1 закрывается.

В свою очередь, транзистор VT2 открывается и подает напряжение на реле, которое включает лампу.

Источник: http://www.joyta.ru/7603-fotorezistor-osnovnaya-informaciya/

Фоторезисторы Конструкция и схема включения фоторезистора

Фоторезисторами называют полупроводниковые приборы, проводимость которых меняется под действием света.

Монокристаллический фоторезистор

Рис. 2.2. Монокристаллический фоторезистор

Пленочный фоторезистор

Рис. 2.3. Пленочный фоторезистор

Рис. 2.4. Включение фоторезистора в цепь постоянного тока

Конструкция монокристаллического и пленочного фоторезисторов показана на рис. 2.2, 2.3. Основным элементом фоторезистора является в первом случае монокристалл, а во втором — тонкая пленка полупроводникового материала.

Если фоторезистор включен последовательно с источником напряжения (рис. 2.4) и не освещен, то в его цепи будет протекать темновой ток:

где Е — ЭДС источника питания;

RT — величина электрического сопротивления фоторезистора в темноте, называемая темновым сопротивлением;

RH — сопротивление нагрузки.

При освещении фоторезистора энергия фотонов расходуется на перевод электронов в зону проводимости. Количество свободных электронно-дырочных пар возрастает, сопротивление фоторезистора падает, и через него течет световой ток, обусловленный формулой:

Обратите внимание

Разность между световым и темновым током дает значение тока 1ф, получившего название первичного фототока проводимости

Когда лучистый поток мал, первичный фототок проводимости практически безынерционен и изменяется прямо пропорционально величине лучистого потока, падающего на фоторезистор. По мере возрастания величины лучистого потока увеличивается число электронов проводимости.

Двигаясь внутри вещества, электроны сталкиваются с атомами, ионизируют их и создают дополнительный поток электрических зарядов, получивший название вторичного фототока проводимости. Увеличение числа ионизированных атомов тормозит движение электронов проводимости.

В результате этого изменения фототока запаздывают во времени относительно изменений светового потока, что определяет некоторую инерционность фоторезистора.

Основные характеристики фоторезисторов

Фоторезистор (от фото- и резистор), представляет собой полупроводниковый резистор, омическое сопротивление которого определяется степенью освещенности. В основе принципа действия фоторезисторов лежит явление фотопроводимости полупроводников. Фотопроводимость — увеличение электрической проводимости полупроводника под действием света.

Причина фотопроводимости — увеличение концентрации носителей заряда — электронов в зоне проводимости и дырок в валентной зоне. Светочувствительный слой полупроводникового материала в таких сопротивлениях помещен между двумя токопроводящими электродами.

Под воздействием светового потока электрическое сопротивление слоя меняется в несколько раз (у некоторых типов фотосопротивлений оно уменьшается на два-три порядка). В зависимости от применяемого слоя полупроводникового материала фотосопротивления подразделяются на сернисто-свинцовые, сернисто-кадмиевые, сернисто-висмутовые и поликристаллические селено-кадмиевые.

Фотосопротивления обладают высокой чувствительностью, стабильностью, они экономичны и надежны в эксплуатации. В целом ряде случаев они с успехом заменяют вакуумные и газонаполненные фотоэлементы.

Основные характеристики фотосопротивлений:

•        Рабочая площадь.

•        Темновое сопротивление (сопротивление в полной темноте), варьируется в обычных приборах от 1000 до 100000000 Ом.

•        Удельная чувствительность

Важно

где Ai — фототок, равный разности токов в темноте и на свету; Ф — световой поток; U — приложенное напряжение.

•        Предельное рабочее напряжение (как правило от 1 до 1000 В).

•        Среднее относительное изменение сопротивления в процентах (обычно лежит в пределах 10…99,9%):

где RT и Rc — сопротивление в темноте и в освещенном состоянии соответственно.

•        Средняя кратность изменения сопротивления (как правило от 1 до 1000). Определяется соотношением: RT/RC.

Схема включения фоторезисторов показана на рис. 2.5.

При определенном освещении сопротивление фотоэлемента уменьшается, а, следовательно, сила тока в цепи возрастает, достигая значения, достаточного для работы какого-либо

Рис. 2.5. Электрическая схема включения фоторезистора

Рис. 2.6. ВАХ фоторезистора

устройства (схематично показано в виде некоторого сопротивления нагрузки). Полезный сигнал для дальнейшего усиления или управления другими устройствами снимают параллельно RHarp.

Основными характеристиками фоторезисторов являются:

• Вольт-амперная (ВАХ), характеризующая зависимость фототока (при постоянном световом потоке Ф) или темнового тока от приложенного напряжения. Для фоторезисторов эта зависимость практически линейна (рис. 2.6). Закон Ома нарушается только при высоких напряжениях, приложенных к фоторезистору.

Световая (люкс-амперная), характеризующая зависимость фототока от падающего светового потока постоянного спектрального состава. Полупроводниковые фоторезисторы имеют нелинейную люкс-амперную характеристику (рис. 2.7). Наибольшая чувствительность получается при малых освещенностях.

Это позволяет использовать фоторезисторы для измерения очень малых интенсивностей излучения. При увеличении освещенности световой ток растет примерно пропорционально корню квадратному из освещенности. Наклон люкс-амперной характеристики зависит от приложенного к фоторезистору напряжения.

Рис, 2.7. Зависимость тока от светового потока, падающего на рабочую поверхность фоторезистора

Рис. 2.8. Зависимость спектральной характеристики от материала фоторезистора

Рис. 2.9. Зависимость фототока фоторезистора от частотной модуляции светового потока

• Спектральная, характеризующая чувствительность фоторезистора при действии на него потока излучения постоянной мощности определенной длины волны.

Спектральная характеристика определяется материалом, используемым для изготовления светочувствительного элемента.

Сернисто-кад- миевые фоторезисторы имеют высокую чувствительность в видимой области спектра, селенисто-кадмиевые — в красной, а сернисто-свинцовые — в инфракрасной. Это хорошо демонстрирует рис. 2.8.

Частотная, характеризующая чувствительность фоторезистора при действии на него светового потока, изменяющегося с определенной частотой.

Совет

Наличие инерционности у фоторезисторов приводит к тому, что величина их фототока зависит от частоты модуляции падающего на них светового потока — с увеличением частоты светового потока фототок уменьшается (см. рис. 2.9).

Читайте также:  Можно ли развернуть подпорку к деревянному электрическому столбу?

Инерционность ограничивает возможности применения фоторезисторов при работе с переменными световыми потоками высокой частоты.

Параметры фоторезисторов

Рабочее напряжение Up — постоянное напряжение, приложенное к фоторезистору, при котором обеспечиваются номинальные параметры при длительной его работе в заданных эксплуатационных условиях.

Максимально допустимое напряжение фоторезистора Umax — максимальное значение постоянного напряжения, приложенного к фоторезистору, при котором отклонение его параметров от номинальных значений не превышает указанных пределов при длительной работе в заданных эксплуатационных условиях.

Темновое сопротивление RT — сопротивление фоторезистора в отсутствие падающего на него излучения в диапазоне его спектральной чувствительности.

Световое сопротивление Rc — сопротивление фоторезистора, измеренное через определенный интервал времени после начала воздействия излучения, создающего на нем освещенность заданного значения.

Кратность изменения сопротивления KR — отношение тем- нового сопротивления фоторезистора к сопротивлению при определенном уровне освещенности (световому сопротивлению).

Допустимая мощность рассеяния — мощность, при которой не наступает необратимых изменений параметров фоторезистора в процессе его эксплуатации.

Общий ток фоторезистора — ток, состоящий из темнового тока и фототока.

Фототок — ток, протекающий через фоторезистор при указанном напряжении на нем, обусловленный только воздействием потока излучения с заданным спектральным распределением.

Удельная чувствительность — отношение фототока к произведению величины падающего на фоторезистор светового потока на приложенное к нему напряжение, мкА/(лм-В):

Обратите внимание

где 1ф — фототок, равный разности токов, протекающих по фоторезистору в темноте и при определенной (200 лк) освещенности, мкА;

Ф — падающий световой поток, лм; U — напряжение, приложенное к фоторезистору, В.

Интегральная чувствительность — произведение удельной чувствительности на предельное рабочее напряжение:

Постоянная времени тф — время, в течение которого фото- ток изменяется на 63%, т.е. в е раз. Постоянная времени характеризует инерционность прибора и влияет на вид его частотной характеристики.

Рис. 2.10. Иллюстрация нарастания и спада фототока в зависимости от освещенности фоторезистора

При включении и выключении света фототок возрастает до максимума (рис. 2.10) и спадает до минимума не мгновенно.

Характер и длительность кривых нарастания и спада фототока во времени существенно зависят от механизма рекомбинации неравновесных носителей в данном материале, а также от величины интенсивности света.

При малом уровне инжекции нарастание и спад фототока во времени можно представить экспонентами с постоянной времени т, равной времени жизни носителей в полупроводнике. В этом случае при включении света фототок будет нарастать и спадать во времени по закону:

где 1ф — стационарное значение фототока при освещении.

По кривым спада фототока во времени можно определить время жизни т неравновесных носителей.

Изготовление фоторезисторов

В качестве материалов для фоторезисторов широко используются сульфиды, селениды и теллуриды различных элементов, а также соединения типа AlMBv. В инфракрасной области могут быть использованы фоторезисторы на основе PbS, PbSe, PbTe, InSb, в области видимого света и ближнего спектра ультрафиолета — CdS.

Применение фоторезисторов

Важно

Сегодня фоторезисторы широко применяются во многих отраслях науки и техники. Это объясняется их высокой чувствительностью, простотой конструкции, малыми габаритами и значительной допустимой мощностью рассеяния.

Значительный интерес представляет использование фоторезисторов в опто- электронике.

В радиолюбительских конструкциях фоторезисторы применяются как световые датчики в устройствах слежения и автоматики, автоматических и фотореле в быту, в охранных системах.

Регистрация оптического излучения

Для регистрации оптического излучения его световую энергию преобразуют в электрический сигнал, который затем измеряют обычным способом. При этом преобразовании обычно используют следующие физические явления:

•        генерацию подвижных носителей в твердотельных фотопрово- дящих детекторах;

•        изменение температуры термопар при поглощении излучения, приводящее к изменению термо-ЭДС;

•        эмиссию свободных электронов в результате фотоэлектрического эффекта с фоточувствительных пленок.

Наиболее важными типами оптических детекторов являются:

•        фотоумножитель;

•        полупроводниковый фоторезистор;

•        фотодиод;

•        лавинный фотодиод.

Полупроводниковый фотодетектор

Схема включения полупроводникового фотодетектора приведена на рис. 2.11.

Рис. 2.11. Схема подключения полупроводникового фотоэлемента

Полупроводниковый кристалл последовательно соединен с резистором R и источником постоянного напряжения U. Оптическая волна, которую нужно зарегистрировать, падает на кристалл и поглощается им, возбуждая при этом электроны в зону проводимости (или в полупроводниках р-типа — дырки в валентную зону).

Такое возбуждение приводит к уменьшению сопротивления Rd полупроводникового кристалла и, следовательно, к увеличению падения напряжения на сопротивлении R, которое при ARd/Rd « 1 пропорционально плотности падающего потока.

В качестве примера рассмотрим энергетические уровни одного из наиболее распространенных полупроводников — германия, легированного атомами ртути. Атомы Нд в германии являются акцепторами с энергией ионизации 0,09 эВ.

Следовательно, для того чтобы поднять электрон с верхнего уровня валентной зоны и чтобы атом Нд (акцептор) сумел захватить его, необходим фотон с энергией не менее 0,09 эВ (т.е. фотон с длиной волны короче 14 мкм).

Обычно кристалл германия содержит небольшое количество ND донорных атомов, которым при низких температурах энергетически выгодно отдавать свои валентные электроны большому количеству NA акцепторных атомов. При этом возникает равное количество положительно ионизированных донорных и отрицательно ионизированных акцепторных атомов. Так как концентрация акцепторов NA » ND, большинство атомов-акцепторов остается незаряженными.

Главным преимуществом полупроводниковых фотодетекторов по сравнению с фотоумножителями является их способность регистрировать длинноволновое излучение, поскольку создание подвижных носителей в них не связано с преодолением значительного поверхностного потенциального барьера.

Недостатком же их является небольшое усиление по току. Чтобы выходной импульс мог управлять различными электронными системами, его необходимо многократно усилить.

Таким усилителем может быть одно-двухкаскадный транзисторный усилитель или операционный усилитель.

Совет

Чтобы фотовозбуждение носителей не маскировалось тепловым возбуждением, полупроводниковые фотодетекторы не должны эксплуатироваться в средах с высокими температурами, иначе их необходимо охлаждать.

Источник: http://nauchebe.net/2011/02/fotorezistory-konstrukciya-i-sxema-vklyucheniya-fotorezistora/

Фототранзистор: принцип работы, как проверить

Фоточувствительные приборы используются в разных отраслях электроники и радиотехники. Все больше сейчас применяется фототранзистор, у которого более простой принцип работы, нежели у фотодиодов.

Что это такое и где применяется

Фототранзистор – это полупроводниковый прибор оптоволоконного типа, который используется для управления электрическим током при помощи определенного оптического излучения.

Эти устройства разработаны на базе обычного транзистора. Их современными аналогами являются фотодиоды, но фототранзисторы лучше подходят для многих современных радио и электронных приборов.

По принципу действия, они напоминают также фоторезисторы.

Фото – фототранзистор

В отличие от фотодиодов, у этих полупроводников более высокая чувствительность.

Где используется фототранзистор:

  1. Охранные системы (в основном, используются ИК-фототранзисторы);
  2. Кодеры;
  3. Компьютерные логические системы управления;
  4. Фотореле;
  5. Автоматическое управление освещения (здесь также используется инфракрасный фото-полупроводник);
  6. Датчики уровня и системы подсчета данных.

Нужно отметить, что из-за диапазона Вольт гораздо чаще в подобных системах используются фотодиоды, но фототранзисторы имеют несколько существенных преимуществ:

  1. Могут производить больший ток, чем фотодиоды;
  2. Эти радиодетали сравнительно очень дешевые;
  3. Могут обеспечить мгновенный высокий ток на выходе;
  4. Главным достоинством приборов является то, что они могут обеспечить высокое напряжение, чего, к примеру, не сделают фоторезисторы.

При этом данный аналог светодиода имеет существенные недостатки, что делает фототранзистор довольно узкоспециализированной деталью:

  1. Многие полупроводниковые устройства выполнены из силикона, они не способны обрабатывать напряжение свыше 1000 вольт.
  2. Данные радиодетали очень чувствительны к перепадам напряжения в локальной электрической сети. Если диод не перегорит от скачка напряжения, то транзистор, скорее всего, не выдержит испытания;
  3. Фототранзистор не подходит для использования в лампах из-за того, что не позволяет быстро двигаться направленным заряженным частицам.

Принцип работы

Фототранзистор работает так же, как и транзистор, где ток направляется к коллектору, ключевым отличием является то, что в данном приборе, электроток контролируется только двумя активными контактами.

Фото – простой фототранзистор

В простой схеме, при условии, что ничего не подключено к фототранзистору, базовый ток регулируется при помощи определенного оптического излучения, которое определяет коллектор. Электроток попадает на полупроводник только после резистора.

Таким образом, напряжение на приборе будет двигаться от высокого к низкому, в зависимости от уровня оптического излучения. Для усиления сигнала можно подключить устройство к специальному оборудованию. Выход фототранзистора зависит от длины волны падающего света. Этот полупроводник реагирует на свет в широком диапазоне волн в зависимости от спектра работы.

Выход фототранзистора определяется площадью открытой переходной коллектор-базы и постоянного тока усиления транзистора.

Фототранзистор бывает разного типа действия, про это говорят основные схемы включения устройства. Виды прибора:

  1. Оптический изолятор (напоминает по принципу трансформатор, у которого входы заблокированы при помощи электрических контактов);
  2. Фотореле;
  3. Датчики. Применяются в охранных системах. Это активные приборы, излучающие свет. При формировании и выделении определенного импульса, полупроводниковый прибор сразу же рассчитывает силу его возвращения. Если сигнал не вернулся или вернулся с другой частотой, то срабатывает сигнализация (как в охранных системах ИК).

Маркировки и основные параметры

Фототранзисторы, которые управляются внешними факторами, имеют обозначение аналогичное обычным транзисторам. На рисунке ниже Вы можете видеть, как такой датчик схематически показывается на чертеже.

Фото – обозначение транзисторов

При этом VT1, VT2 – это фототранзисторы и база, а VT3 – без базы (например, из мышки). Обратите внимание, цоколевка показана также, как у обычных транзисторов.

Вместе с прочими приборами полупроводникового типа (n-p-n), использующимися для трансформации излучения, эти устройства являются оптронами. Соответственно, их можно изобразить как светодиод в корпусе либо как оптроны (с двумя стрелками, находящимися под углом 90 градусов к базе коллектора). Усилитель на большинстве таких схем обозначается так же, как и база коллектора.

Основные характеристики фототранзисторов LTR 4206E, ФТ 1К и ИК-SFH 305-2/3:

Название Ток коллектора, mA Ток фотоэлемента, mA Напряжение, V Область использования Длина волны, nm
LTR 4206E 100 4,8 30 Радиоэлектронные схемы. 940
ФТ 1К 100 0,4 30 Логические системы управления, сигнализация и т. д. 940
ИК-SFH 305-2/3 (Osram) 50 0.25 – 0.8 32 Охранные системы, роботы, датчики препятствия Arduino (Ардуино) на фототранзисторе. 850

При этом светосинхронизатор ФТ 1 выполнен из кремния, что дает ему явное преимущество – долговечность и устойчивость к перепадам напряжения. ВАХ представляют собой формулу:

Фото – формула ВАХ

Расчет производится так же, как и у биполярных транзисторов.

В зависимости от потребностей, Вы можете купить фототранзистор SMD PT12-21, КТФ-102А или LTR 4206E (перед тем, как взять деталь, нужно проверить её работоспособность). Цена от 3 рублей до нескольких сотен.

Видео: как проверить работу фототранзистора

Пример использования

Если Вы хотите своими руками сделать устройство, для которого необходим фототранзистор, можно разработать простую интеллектуальную систему. Робот по этой схеме будет реагировать на свет, в зависимости от настройки, он будет от него убегать или наоборот, выходить на источник освещения.

Чтобы самому сделать робота, необходимо приготовить:

  1. Микросхему L293D;
  2. Небольшой моторчик, можно взять даже от детской игрушки;
  3. Любые отечественные фототранзисторы и полевые резисторы с сопротивлением на менее 200 Ом;
  4. Кабеля для соединения и корпус, где будет расположен механизм.

Схема робота

Как видно по схеме, фототранзистор здесь – это своеобразный микроконтроллер, как ATMEGA, который определяет источник света, даже его подключение аналогично.

Читайте также:  Какой контактор выбрать для того чтобы сделать авр от однофазного генератора?

Вы можете при использовании паяльника сделать простой механизм, который будет следовать даже за тенью. Подобные импортные приборы выпускает компания BEAM, но, естественно, там более мощная оптопара.

Для работы устройства Вам нужно только правильно подключить фототранзистор к схеме и питанию.

На обозначении есть пункты GDR и VCC. Первое – это заземление, второе – питание. Обратите внимание, рядом с питанием стоит значок 5В – это значит, что батарея должна быть минимум на 5 вольт.

Обратите внимание

Принцип действия такого робота прост: когда свет попадает на фототранзистор, на микросхеме происходит включение мотора. Это реализуется, потому что приемник подал положительный сигнал. Заводится самодельный мотор и прибор начинает двигаться.

Использование резистора в этой схеме необходимо для регулировки электрического тока. Также от сопротивления резистора зависит долговечность оптической детали, если он перегреется – то фототранзистору потребуется замена.

Для работы очень важно подключить все провода также, как и на схеме. Выключатель к роботу можно приделать от обычной шариковой ручки, он будет разрывать связь между микросхемой и фототранзистором.

Проверка робота производится путем исследования его реакции на свет и тень.

Источник: https://www.asutpp.ru/fototranzistor.html

Фоторезисторы, фотодиоды, фототранзисторы. Общие понятия

Фотоэлектрическими приборами называют электронные приборы, способные изменять те или иные свои  характеристики под действием света. Значение этих устройств практически во всех областях радиотехники и электроники переоценить сложно, поэтому сегодняшнюю беседу посвятим им.

Фоторезисторы. В принципе, название прибора говорит само за себя — они под действием света изменяют свое сопротивление.

Обычно затемненный резистор имеет сопротивление порядка 1 – 200 МОм, при освещении эта цифра уменьшается на 2-3 порядка.

Главное преимущество фоторезистора – практически линейная зависимость сопротивления от освещенности, поэтому их удобно использовать в аналоговых приборах – датчиках и измерителях освещенности.

Недостатки же фоторезисторов следующие: достаточно высокие сопротивления (как темновое, так и световое), с которыми не всегда удобно работать. К примеру, ТТЛ микросхемы цифровой техники напрямую не смогут управляться таким резистором – слишком «грубые» их входы не смогут работать с делителями, собранными на сопротивлениях большого номинала:

На это способны только микросхемы КМОП, собранные на полевых транзисторах. Следующий недостаток – достаточно низкая (по сравнению, конечно, с другими типами фотоэлементов) чувствительность.

И главный недостаток, который делает применение фоторезисторов в цифровой технике нецелесообразным – низкая скорость реакции на свет.

При частоте световых импульсов выше килогерца форма электрического сигнала на фоторезисторе неудовлетворительна, а если увеличить частоту еще, то резистор вообще перестанет видеть, что свет «мигает».

Важно

Если вспомнить, на каких частотах работает сегодняшняя цифровая техника, то будет очевидно, что фоторезистор в качестве «глаз» для цифрового устройства – плохой вариант. Фоторезистор – прибор неполярный, а потому следить за тем, какой вывод куда подключать, надобности нет.

Фотодиоды. Этот полупроводниковый прибор по своим характеристикам очень напоминает диод обычный, поэтому следить за полярностью его включения придется.

При обратном включении (на катод подается «плюс» источника питания) фотодиод ведет себя так же, как фоторезистор, но в отличие от последнего имеет гораздо более низкое световое сопротивление и в состоянии выдерживать приличный ток. Это позволяет управлять мощными транзисторами и ТТЛ микросхемами напрямую, без дополнительных усилителей:

Еще одно достоинство фотодиода – достаточно высокая скорость реакции, благодаря чему эти приборы широко используются для передачи цифровой информации. Компьютерная ИК-связь, пульты ДУ для радио – и телеаппаратуры – все это фотодиоды.

По диапазону чувствительности фотодиоды различают на инфракрасные и приборы видимого излучения.

Первые «видят» в основном ИК-излучение и мало чувствительны к видимому участку излучения, вторые наоборот – хорошо видят тот свет, который видит и наш глаз, но «слеповаты» в ИК-диапазоне.

И еще одно интересное свойство фотодиода – при прямом включении он способен работать как генератор. Если осветить фотодиод, то на его выводах появится напряжение. Его можно усилить, если прибор работает как датчик света, а можно использовать и для питания аппаратуры, соединив множество светодиодов в солнечную батарею.

Фототранзистор. По сути это обычный транзистор, но без крышки в буквальном смысле. Крышка, закрывающая кристалл прибора, конечно, есть, но она выполнена из прозрачного материала и видимый свет может попадать на кристалл. Для чего? Прежде всего, вспомним, как работает биполярный транзистор.

Подавая на базу некоторое напряжение, можно управлять сопротивлением перехода эмиттер-коллектор. Но оказывается, сопротивлением перехода можно управлять и обычным светом.

Итак, фототранзистор – это обычный транзистор, который имеет еще одну, дополнительную «базу» – световую. Освещаем – открываем транзистор.

В таком включении вывод базы фототранзистора можно вообще не использовать – его роль выполняет свет.

Совет

Но, подавая на базу то или иное напряжение смещения, можно изменять чувствительность фототранзистора (специалисты обычно говорят «сдвинуть,сместить его рабочую точку»), приоткрывая его в той или иной степени, а значит регулировать параметры всей схемы:

Источник: http://begin.esxema.ru/?p=698

Принцип работы фоторезистора

13.2. Содержание работы

Фотоэффект (фотоэлектрический эффект) — это собирательное название явлений, в которых при поглощении электромагнитного излучения веществом происходит освобождение заряженных частиц.

В частности, внешний фотоэффект — это вырывание светом электронов из поверхности вещества в вакуум. Внутренний фотоэффект — это вызванные электромагнитным излучением переходы электронов внутри полупроводника (диэлектрика) из связанных состояний в свободные.

При этом в полупроводнике возникает добавочная проводимость (фотопроводимость).

Как известно, с точки зрения зонной теории кристаллов [1,2], отличие полупроводников от металлов не количественное, а качественное и связано с особенностями именно зонной структуры.

У металлов валентная зона заполнена электронами не полностью, поэтому валентные электроны при сообщении совсем небольшой энергии (10–23 ÷ 10–22  эВ) могут переходить на более высокие энергетические уровни.

В частности, при действии на электроны электрического поля они приобретают дополнительную скорость в направлении, противоположном полю, и принимают участие в упорядоченном движении. Иными словами, у металлов все валентные электроны являются электронами проводимости (а зона проводимости совпадает с валентной зоной).

Напротив, у полупроводников (и диэлектриков) количество уровней в валентной зоне в точности равно количеству валентных электронов. Поэтому ближайшие уровни, на которые могли бы перейти электроны, относятся к вышележащей энергетической зоне (она и будет зоной проводимости).

Для того, чтобы перевести электрон в чистом проводнике на более высокий энергетический уровень, необходимо сообщить ему энергию, не меньшую ширины запрещенной зоны, отделяющей зону проводимости от валентной зоны.

Обратите внимание

При этом в валентной зоне образуется незанятый уровень — дырка — на который смогут теперь легко переходить валентные электроны с ближайших к нему уровней. Таким образом, возникает пара свободных носителей заряда: электрон проводимости и дырка в валентной зоне.

Переход валентных электронов в зону проводимости в полупроводниках происходит, главным образом, за счет энергии теплового движения.

При поглощении фотона, энергия которого Е = hν равна ширине запрещенной зоны полупроводника ∆E (или превосходит ее), также может образоваться пара электрон-дырка.

Если полупроводник содержит примеси, имеющие энергетические уровни в запрещенной зоне проводника, для создания электронно-дырочной пары фотону достаточно иметь энергию hv ≥ ∆Е1, где ∆Е1 — энергия активации примесного атома. (Разумеется, это относится и к тепловому механизму рождения носителей.)

Из вышесказанного ясно, что свет будет поглощаться полупроводником, только если его длина волны удовлетворяет условию λ ≤ λ0, где λ0 — красная граница фотопроводимости, определяемая из условия

λ0 = hc / ∆Е

(13.1)

для собственных (чистых) полупроводников или

λ0 = hc / ∆Е1

(13.2)

для примесных. Энергия квантов света с λ > λ0 будет недостаточной, чтобы вызвать переход электронов в зону проводимости, и облучение таким светом не создает фотопроводимости.

С другой стороны, свет с длиной волны, меньшей некоторой λmax, также оказывается мало активным фотоэлектрически, несмотря на то, что хорошо поглощается полупроводником. (На рис. 13.

1 схематически показаны графики зависимости коэффициента поглощения А (тонкая линия) и фотопроводимости σФ (жирная линия) от длины волны λ.

) Наличие фотоэлектрически неактивного поглощения фотонов свидетельствует о существовании особого механизма возбуждения атомов, не приводящего к появлению носителей тока. Таким механизмом оказывается образование экситонов [3].

Экситоном называется связанная кулоновскими силами система из электрона проводимости и дырки, образовавшейся в валентной зоне при перескоке электрона в зону проводимости. Такая система переносится по кристаллу как единое целое, подобно атому водорода (хотя радиус экситона во много раз больше межатомных расстояний!).

Важно

Будучи электрически нейтральными, экситоны не дают вклада в проводимость.Явление внутреннего фотоэффекта используется в двух типах полупроводниковых приборов: в фотодиодах — преобразователях световой энергии в электрическую (например, солнечные батареи) и в фоторезисторах — пассивных радиоэлементах, сопротивление которых зависит от освещённости.

В настоящей работе изучаются свойства фоторезисторов. На рисунке 13.2 показана схема одного из типов сопротивления. Оно состоит из тонкого полупроводникового слоя 2 (например, сернистый таллий, сернистый свинец, сернистый кадмий), нанесённого на изолирующую подложку 1, металлических электродов 3, посредством которых фотосопротивление включается в цепь, и защитного лакового покрытия 4.

Для характеристики полупроводникового фотосопротивления и возможной области его применения вводится ряд параметров. Важнейшими из них являются: интегральная и спектральная чувствительности, вольтамперная характеристика, постоянная времени, рабочее напряжение, световая характеристика, кратность изменения сопротивления.

Под интегральной чувствительностью (k0) фоторезистора понимают отношение фототока (IФ) к величине падающего светового потока (Ф), если к фоторезистору приложено напряжение U = 1 В:

k0 = Jф / ЦU

Световая (люкс-амперная) характеристика фоторезистора выражает зависимость фототока от величины светового потока, падающего на фотосопротивление, при постоянном напряжении. Световая характеристика фотосопротивлений не является линейной, что свидетельствует о сложном характере явлений, происходящих при внутреннем фотоэффекте. (В данной лабораторной работе понятие «световая характеристика» имеет несколько иной смысл — см. раздел «Методика эксперимента»)Спектральная чувствительность характеризует величину фототока при действии на фотосопротивление единицы светового потока определенной длины волны при определенном приложенном напряжении.Вольтамперная характеристика фотосопротивления отражает зависимость силы фототока от напряжения, приложенного к фотосопротивлению, при неизменном световом потоке. Для большинства фотосопротивлений вольтамперная характеристика имеет линейный характер, т.е. существует пропорциональная зависимость между фототоком и напряжением при напряжениях, не превышающих допустимое.Фотоэлектрические процессы в фотосопротивлении обладают инерционностью. Поэтому, когда на поверхность фотосопротивления начинает падать свет, фототок достигает максимального значения не мгновенно, а через некоторый промежуток времени. Аналогичное явление наблюдается и при внезапном прекращении освещения. Процесс освобождения светом новых электронов и дырок сопровождается их рекомбинацией. По мере роста концентрации избыточных носителей заряда скорость рекомбинации также растет, и только по истечении некоторого времени после начала освещения концентрации электронов и дырок достигают равновесных значений, которые сохраняются, пока освещение неизменно. После прекращения освещения избыточные носители не мгновенно, а в течение некоторого времени рекомбинируют друг с другом до тех пор, пока не установится концентрация носителей заряда, характерная для неосвещенного полупроводника (темновая концентрация). Инерционность фотосопротивлений характеризуется постоянной времени τ, которая определяется как время, за которое фототок после прекращения освещения уменьшается в е раз.Кратность изменения сопротивления определяет, во сколько раз изменяется омическое сопротивление фоторезистора при его освещении:C = RT / RCB

(13.4)

где RТ — темновое сопротивление фоторезистора, RСВ — сопротивление фоторезистора при освещении.

Источник: http://fevt.ru/load/fotorezistor/55-1-0-240

Ссылка на основную публикацию
Adblock
detector