Как происходит передача и распределение электроэнергии?

Инфофиз – мой мир..

Производство, передача и распределение электроэнергии.

   Проблема обеспечения энергией уже в самое ближайшее время станет одной из наиболее острых среди глобальных проблем человечества.

Более 60% энергии вырабатывается на тепловых электростанциях (ТЭС) на органическом топливе (уголь, нефтепродукты, газ, торф), примерно 18% – на атомных (АЭС) и гидроэлектростанциях (ГЭС), а остальные 2% – на солнечных, ветровых, геотермальных и прочих электростанциях.

   Производство электрической энергии в России концентрируется преимущественно на крупных электростанциях. Потребители электрической энергии – промышленность, строительство, электрифицированный транспорт, сельское хозяйство, сфера бытового обслуживания расположены в городах и сельской местности.

Центры потребления электроэнергии, как правило, удалены от ее источников зачастую на расстояния в сотни и даже тысячи километров и распределены на значительной территории. В связи с этим возникает задача транспортирования электроэнергии от станций к потребителям.

Обратите внимание

Эту задачу выполняют электрические сети, состоящие из линий электропередачи (ЛЭП) и подстанций.

   Передача электрической энергии от электростанций до больших городов или промышленных центров на расстояния тысяч километров является сложной научно-технической проблемой.

   Для уменьшения потерь на нагревания проводов необходимо уменьшить силу тока в линии передачи (ЛЭП), и, следовательно, увеличить напряжение.

Обычно линии электропередачи строятся в расчете на напряжение 400–500 кВ, при этом в линиях используется трехфазный ток переменной частоты 50 Гц.

На рисунке представлена схема линии передачи электроэнергии от электростанции до потребителя. Схема дает представление об использовании трансформаторов при передаче электроэнергии.

   Следует отметить, что при повышении напряжения в линиях передачи увеличиваются утечки энергии через воздух. В сырую погоду вблизи проводов линии может возникнуть так называемый коронный разряд, который можно обнаружить по характерному потрескиванию. Коэффициент полезного действия линии передач не превышает 90 %.

Условная схема высоковольтной линии передачи. Трансформаторы изменяют напряжение в нескольких точках линии. На схеме изображен только один из трех проводов высоковольтной линии.

Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы.

Трансформатор – прибор для преобразования напряжения и силы переменного тока при неизменной частоте.

Он был изобретен П. Н. Яблочковым в 1876 году. В 1882 году трансформатор был усовершенствован И. Ф. Усагиным.

Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении электромагнитной индукции.

Важно

Простейший трансформатор состоит из сердечника замкнутой формы из магнитомягкого материала, на который намотаны две обмотки: первичная и вторичная.

Первичная обмотка подсоединяется к источнику переменного тока с ЭДС e1(t), поэтому в ней возникает ток J1(t), создающий в сердечнике трансформатора переменный магнитный поток Φ, который практически без рассеяния циркулирует по замкнутому магнитному сердечнику и, следовательно, пронизывает все витки первичной и вторичной обмоток.

В режиме холостого хода, то есть при разомкнутой цепи вторичной обмотки, ток в первичной обмотке весьма мал из-за большого индуктивного сопротивления обмотки. В этом режиме трансформатор потребляет небольшую мощность.

В режиме нагрузки в цепь вторичной обмотки включается сопротивление нагрузки Rн, и в ней возникает переменный ток J2(t). Теперь полный магнитный поток Φ в сердечнике создается обоими токами.

Но согласно правилу Ленца магнитный поток Φ2, создаваемый индуцированным во вторичной обмотке током J2, направлен навстречу потоку Φ1, создаваемому током J1 в первичной обмотке: Φ = Φ1 – Φ2.

Отсюда следует, что токи J1 и J2 изменяются в противофазе, то есть имеют фазовый сдвиг, равный 180°.

Коэффициент k=n1/n2 есть коэффициент трансформации.

При k>1 трансформатор называется повышающим, при k

Источник: http://infofiz.ru/index.php/meh/item/97-stigst

Передача электроэнергии: популярные способы и альтернативные варианты

Электричество не относится к накопительным ресурсам.

На сегодняшний день нет эффективных технологий, позволяющих аккумулировать энергию, выработанную генераторами, поэтому передача электроэнергии потребителям относится к актуальным задачам.

В стоимость ресурса входят затраты на его производство, потери при транспортировке и расходы на монтаж и обслуживание ЛЭП. При этом от схемы передачи напрямую зависит эффективность системы электроснабжения.

Высокое напряжение, как способ уменьшения потерь

Несмотря на то, что во внутренних сетях большинства потребителей, как правило, 220/380 В, электроэнергия передается к ним по высоковольтным магистралям и понижается на трансформаторных подстанциях. Для такой схемы работы есть весомые основания, дело в том, что наибольшая доля потерь приходится на нагрев проводов.

Мощность потерь описывает следующая формула: Q = I2 * Rл ,

где I – сила тока, проходящего через магистраль, RЛ – ее сопротивление.

Исходя из приведенной формулы можно заключить, что снизить затраты можно путем уменьшения сопротивления в ЛЭП или понизив силу тока.

В первом случае потребуется увеличивать сечения провода, это недопустимо, поскольку приведет к существенному удорожанию электропередающих магистралей.

Выбрав второй вариант, понадобится увеличить напряжение, то есть, внедрение высоковольтных ЛЭП приводит к снижению потерь мощности.

Классификация линий электропередач

В энергетике принято разделять ЛЭП на виды в зависимости от следующих показателей:

  1. Конструктивные особенности линий, осуществляющих передачу электроэнергии. В зависимости от исполнения они могут быть двух видов:
  • Воздушными. Передача электричества осуществляется с использованием проводов, которые подвешиваются на опоры.Воздушные линии электропередач
  • Кабельными. Такой способ монтажа подразумевает укладку кабельных линий непосредственно в грунт или в специально предназначенные для этой цели инженерные системы.Обустройство блочной кабельной канализации
  1. Вольтаж. В зависимости от величины напряжения ЛЭП принято классифицировать на следующие виды:
  • Низковольтные, к таковым относятся все ВЛ с напряжением не более 1-го кВ.
  • Средние – от 1-го до 35-ти кВ.
  • Высоковольтные – 110,0-220,0 кВ.
  • Сверхвысоковольтные – 330,0-750,0 кВ.
  • Ультравысоковольтные – более 750-ти кВ.Ультравысоковольтная ЛЭП Экибастуз-Кокчетав 1150 кВ
  1. Разделение по типу тока при передаче электричества, он может быть переменным и постоянным. Первый вариант более распространен, поскольку электростанции, как правило, оборудованы генераторами переменного тока. Но для уменьшения нагрузочных потерь энергии, особенно на большой дальности передачи, более эффективен второй вариант. Как организованы схемы передачи электричества в обоих случаях, а также преимущества каждого из них, будет рассказано ниже.
  2. Классификация в зависимости от назначения. Для этой цели приняты следующие категории:
  • Линии от 500,0 кВ для сверхдальних расстояний. Такие ВЛ связывают между собой отдельные энергетические системы.
  • ЛЭП магистрального назначения (220,0-330,0 кВ). При помощи таких линий осуществляется передача электричества, вырабатываемого на мощных ГЭС, тепловых и атомных электростанциях, а также их объединения в единую энергосистему.
  • ЛЭП 35-150 кВ относятся к распределительным. Они служат для снабжения электроэнергией крупных промышленных площадок, подключения районных распределительных пунктов и т.д.
  • ЛЭП с напряжением до 20,0 кВ, служат для подключения групп потребителей к электрической сети.

Способы передачи электроэнергии

Осуществить передачу электроэнергии можно двумя способами:

  • Методом прямой передачи.
  • Преобразуя электричество в другой вид энергии.

В первом случае электроэнергия передается по проводникам, в качестве которых выступает провод или токопроводящая среда. В воздушных и кабельных ЛЭП применяется именно этот метод передачи.

Преобразование электричества в другой вид энергии открывает перспективы беспроводного снабжения потребителей. Это позволит отказаться от линий электропередач и, соответственно, от расходов, связанных с их монтажом и обслуживанием.

Ниже представлены перспективные беспроводные технологии, над совершенствованием которых ведутся работы.

Технологии беспроводной передачи электричества

К сожалению, на текущий момент возможности транспортировки электричества беспроводным способом сильно ограничены, поэтому об эффективной альтернативе методу прямой передачи говорить пока рано. Исследовательские работы в этом направлении позволяют надеяться, что в ближайшее время решение будет найдено.

Схема передачи электроэнергии от электростанции до потребителя

Ниже на рисунке представлены типовые схемы, из которых первые две относятся к разомкнутому виду, остальные – к замкнутому. Разница между ними заключается в том, что разомкнутые конфигурации не являются резервированными, то есть, не имеют резервных линий, которые можно задействовать при критическом увеличении электрической нагрузки.

Пример наиболее распространенных конфигураций ЛЭП

Обозначения:

  1. Радиальная схема, на одном конце линии находится электростанция производящая энергию, на втором – потребитель или распределительное устройство.
  2. Магистральный вариант радиальной схемы, отличие от предыдущего варианта заключается в наличии отводов между начальным и конечным пунктами передачи.
  3. Магистральная схема с питанием на обоих концах ЛЭП.
  4. Кольцевой тип конфигурации.
  5. Магистраль с резервной линией (двойная магистраль).
  6. Сложнозамкнутый вариант конфигурации. Подобные схемы применяются при подключении ответственных потребителей.

Теперь рассмотрим более подробно радиальную схему для передачи вырабатываемой электроэнергии по ЛЕП переменного и постоянного тока.

Рис. 6. Схемы передачи электроэнергии к потребителям при использовании ЛЭП с переменным (А) и постоянным (В) током

Обозначения:

  1. Генератор, где вырабатывается я электроэнергия с синусоидальной характеристикой.
  2. Подстанция с повышающим трехфазным трансформатором.
  3. Подстанция с трансформатором, понижающим напряжение трехфазного переменного тока.
  4. Отвод для передачи электироэнергии распределительному устройству.
  5. Выпрямитель, то есть устройство преобразующее трехфазный переменный ток в постоянный.
  6. Инверторный блок, его задача сформировать из постоянного напряжение синусоидальное.

Как видно из схемы (А), с источника энергии электричество подается на повышающий трансформатор, затем при помощи воздушных линий электропередач производится транспортировка электроэнергии на значительные расстояния. В конечной точке линия подключается к понижающему трансформатору и от него идет к распределителю.

Метод передачи электроэнергии в виде постоянного тока ( В на рис.6) от предыдущей схемы отличается наличием двух преобразовательных блоков (5 и 6).

Закрывая тему раздела, для наглядности приведем упрощенный вариант схемы городской сети.

Наглядный пример структурной схемы электроснабжения

Обозначения:

  1. Электростанция, где электроэнергия производится.
  2. Подстанция, повышающая напряжение, чтобы обеспечить высокую эффективность передачи электроэнергии на значительные расстояния.
  3. ЛЭП с высоким напряжением (35,0-750,0 кВ).
  4. Подстанция с понижающими функциями (на выходе 6,0-10,0 кВ).
  5. Пункт распределения электроэнергии.
  6. Питающие кабельные линии.
  7. Центральная подстанция на промышленном объекте, служит для понижения напряжения до 0,40 кВ.
  8. Радиальные или магистральные кабельные линии.
  9. Вводный щит в цеховом помещении.
  10. Районная распределительная подстанция.
  11. Кабельная радиальная или магистральная линия.
  12. Подстанция, понижающая напряжение до 0,40 кВ.
  13. Вводный щит жилого дома, для подключения внутренней электрической сети.

Передача электроэнергии на дальние расстояния

Основная проблема, связанная с такой задачей – рост потерь с увеличением протяженности ЛЭП. Как уже упоминалось выше, для снижения энергозатрат на передачу электричества уменьшают силу тока путем увеличения напряжения. К сожалению, такой вариант решения порождает новые проблемы, одна из которых коронные разряды.

С точки зрения экономической целесообразности потери в ВЛ не должны превышать 10%. Ниже представлена таблица, в которой приводится максимальная протяженность линий, отвечающих условиям рентабельности.

Таблица 1. Максимальная протяженность ЛЭП с учетом рентабельности (не более 10% потерь)

Напряжение ВЛ (кВ) Протяженность (км)
0,40 1,0
10,0 25,0
35,0 100,0
110,0 300,0
220,0 700,0
500,0 2300,0
1150,0* 4500,0*

* – на текущий момент ультравысоковольтная ВЛ переведена на работу с напряжением в половину от номинального (500,0 кВ).

Постоянный ток в качестве альтернативы

В качестве альтернативы электропередачи переменного тока на большое расстояние можно рассматривать ВЛ с постоянным напряжением. Такие ЛЭП обладают следующими преимуществами:

  • Протяженность ВЛ не влияет на мощность, при этом ее максимальное значение существенно выше, чем у ЛЭП с переменным напряжением. То есть при увеличении потребления электроэнергии (до определенного предела) можно обойтись без модернизации.
  • Статическую устойчивость можно не принимать во внимание.
  • Нет необходимости синхронизировать по частоте связанные энергосистемы.
  • Можно организовать передачу электроэнергии по двухпроводной или однопроводной линии, что существенно упрощает конструкцию.
  • Меньшее влияние электромагнитных волн на средства связи.
  • Практически отсутствует генерация реактивной мощности.
Читайте также:  Какой провод и автомат выбрать для подключения тепловой пушки?

Несмотря на перечисленные способности ЛЭП постоянного тока, такие линии не получили широкого распространения. В первую очередь это связано с высокой стоимостью оборудования, необходимого для преобразования синусоидального напряжения в постоянное. Генераторы постоянного тока практически не применяются, за исключением электростанций на солнечных батареях.

С инверсией (процесс  полностью противоположный выпрямлению) также не все просто, необходимо допиться качественных синусоидальных характеристик, что существенно увеличивает стоимость оборудования. Помимо этого следует учитывать проблемы с организацией отбора мощности и низкую рентабельность при протяженности ВЛ менее 1000-1500 км.

Кратко о свехпроводимости.

Сопротивление проводов можно существенно снизить, охладив их до сверхнизких температур.

Совет

Это позволило бы вывести эффективность передачи электроэнергии на качественно новый уровень и увеличить протяженность линий для использования электроэнергии на большом удалении от места ее производства.

К сожалению, доступные на сегодняшний день технологии не могут позволить использования сверхпроводимости для этих целей ввиду экономической нецелесообразности.

Источник: https://www.asutpp.ru/peredacha-jelektrojenergii.html

Передача и распределение электроэнергии

Электроэнергия передается от источника тока со скоростью 300 тыс. км/с (т. е. в пределах нашей планеты практически мгновенно) с помощью своего носителя – электромагнитного поля.

Распространение поля и связанной с ним энергии — это своеобразный волновой процесс, не похожий на перемещение концентрированных масс многих других энергоносителей, таких, как топливо, падающая вода и др. Впрочем, процессы аналогичного типа встречаются и в природе.

Так, морские волны осуществляют перенос энергии ветра к берегам, где отдают эту энергию в виде прибоя.

В принципе электроэнергия может распространяться и без проводов аналогично тому, как электромагнитное поле распространяет радиосигналы.

Однако экономичная передача сколько-либо существенной мощности даже на небольшие расстояния требует столь громадной частоты (миллиардов герц) и столь сложных устройств приемных и передающих антенн, что современные наука и техника не знают путей быстрого и практического осуществления такой электропередачи на Земле. Другое дело — из Космоса на Землю.

Уже имеются прогнозы и предложения, приобретающие своих сторонников, с энтузиазмом разрабатывающих эту проблему. Например, рассматривается возможность создания в начале следующего века солнечных космических электростанций, “висящих” на высоте от земли 36 тыс. км (геосинхронная орбита).

От таких станций энергия могла бы передаваться на Землю мощным электромагнитным пучком сверхвысокой частоты. При длине волны 10 см пучок пройдет через атмосферу с пренебрежимо малыми потерями. Если приемную антенну построить площадью около 100 км2, то пропускная способность такой электропередачи составит 300—500 млн. кВт, правда, для этого нужно вывести на орбиту 30—50 тыс.

т грузов и собрать на орбите десятки энергоспутников с антеннами диаметром по километру каждая. По расчетам все затраты окупились бы за несколько лет, а космическая электростанция работала бы до 30 лет.

Разумеется, для такого строительства надо разработать совершенно новую (экологически чистую) систему транспорта грузов с Земли в Космос, перспективные варианты которой уже изучаются.

В настоящее время и в обозримом будущем решающее значение для электроэнергетики имет все же транспорт электроэнергии по металлическим проводникам, прежде всего по проводам воздушных линий электропередачи и затем по подземным кабельным линиям.

Обратите внимание

По последним передаются сравнительно небольшие мощности либо они применяются лишь на малые расстояния. Воздушные линии дешевле, для их сооружения и ремонта требуются менее дефицитные материалы.

Поэтому обычно применение кабеля ограничивается выводами от электростанций, вводами в города и подземными городскими и промышленными сетями, где плотностью застройки ограничивается применение воздушных линий электропередач.

Как кажется с первого взгляда, тем потребителям, которым нужна теплота (например, горячая вода для животноводства или отопления зданий), рациональнее и дешевле доставлять для этой цели не электроэнергию, а топливо, которое сжигать на местных котельных.

Ведь тогда отпадает необходимость преобразования химической энергии угля в тепловую и затем в электрическую, передача электроэнергии и ее обратное преобразование в тепловую, что связано с большими потерями.

Действительно, КПД использования угля при его сжигании на месте значительно выше.

Однако нужно учитывать и то обстоятельство, что пользоваться электроэнергией значительно удобнее, чем углем, а тем более дорогим и дефицитным жидким топливом.

При получении теплоты в местных электрокотельных или с помощью местных теплоэлектронагревателей отпадает нужда в складах топлива, ликвидируется труд истопников, уменьшаются вредные выбросы химических отходов сжигаемого топлива и разгружаются железнодорожный и автомобильный транспорт, используемый для перевозки миллионов тонн топлива.

Вместе с перечисленными факторами важно и то, что электрокотельные работают в периоды недогрузки электростанций (например, ночью), получая электроэнергию по удешевленному тарифу и улучшая график нагрузки электростанций, что способствует повышению эффективности и долговечности работы оборудования.

Транспортные потери при передаче электроэнергии на дальние расстояния меньше, чем потери при перевозках на такие же расстояния многих сортов топлива (уголь, торф, сланцы и др.).

Важно

Поэтому в нашей стране уже сооружены воздушные линии электропередачи длиной более 1000 км.

Сооружаются линии электропередачи на расстояния 2000-2400 км для электроснабжения центральных районов европейской части страны дешевой электроэнергией сибирских электростанций, работающих на местных углях. Но и эти расстояния не являются предельными.

Количество потребителей электроэнергии очень велико, и прокладывать к каждому из них свою линию электропередачи явно нецелесообразно. Поэтому наряду с передачей энергии на большие расстояния магистральными линиями напряжением 220—1500 кВ необходимо распределение электроэнергии с помощью электрических сетей 0,38—110 кВ.

Распределительные сети содержат большое число воздушных линий 110 кВ, подключенных (через соответствующую аппаратуру) ко вторичным обмоткам трансформаторов (мощность которых достигает сотен тысяч киловольт-ампер), установленных на крупных подстанциях, питаемых магистральными линиями.

В свою очередь, линии 110 кВ питают множество более мелких подстанций, где установлены сравнительно небольшие трансформаторы (мощностью обычно менее 100 тыс. кВ х А), понижающие напряжение со 110 до 35 или 10 кВ. Напряжение 35 кВ обычно используется для электроснабжения районов с радиусом около 50 км, а 10 кВ – радиусом 15 км.

Иногда применяется промежуточное напряжение 20 кВ с наиболее рациональным радиусом электроснабжения около 30 км. Линии 35, 20 и 10 кВ могут быть воздушными или кабельными.

Разветвленная сеть 35 кВ питает подстанции 35/10 или 35/0,38 кВ.

Подстанции 20/0,38, 10/0,38 или 35/0,38 кВ питают воздушные и кабельные сети напряжением 380/220 В, а также наружные и внутренние электропроводки, обеспечивающие работу различных трехфазных электроприемников при напряжении 380 В и однофазных при напряжении 220 В.

Таким образом работает многоярусная сеть, где все ответственные подстанции обеспечиваются не только основным питанием, но и резервным – от другой линии или от местной резервной электростанции и других источников.

Особенно ответственные электроприемники, бесперебойная работа которых необходима в целях предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего основного оборудования, обеспечиваются электроэнергией от трех независимых взаимно резервирующих источников питания.

Источник: http://www.stroitelstvo-new.ru/elektromonter/peredacha-raspredelenie-elektroenergii.shtml

Передача электроэнергии на расстояние

Главная > Теория > Передача электроэнергии на расстояние

Произведенную электроэнергию невозможно хранить, ее надо немедленно передавать потребителям. Когда был придуман оптимальный способ транспортировки, началось бурное развитие электроэнергетики.

Передача электроэнергии

История

Первые генераторы строили рядом с потребителями энергии. Они были маломощными и предназначались только для электроснабжения отдельного здания или городского квартала.

Но затем пришли к выводу, что гораздо выгоднее возводить крупные станции в районах концентрации ресурсов. Это мощные ГЭС – на реках, крупные ТЭС – рядом с угольными бассейнами.

Для этого нужна передача электроэнергии на расстояние.

Начальные попытки построить передающие линии столкнулись с тем, что при соединении генератора с приемниками электроэнергии длинным кабелем мощность к концу передающей линии сильно снижалась из-за огромных потерь на нагрев. Необходимо было использовать кабели с большей площадью сечения, что делало их значительно более дорогими, или повышать напряжение, чтобы уменьшить силу тока.

Совет

После опытов с передачей постоянного и однофазного переменного тока с помощью линий повышенного напряжения потери оставались слишком высокими – на уровне 75%. И только когда Доливо-Добровольский разработал систему трехфазного тока, был сделан прорыв в передаче электроэнергии: добились снижения потерь до 20%.

Важно! Сейчас подавляющее большинство линий электропередачи использует трехфазный переменный ток, хотя идет развитие и ЛЭП на постоянном токе.

Схема передачи электроэнергии

Магнит на счетчик электроэнергии

В цепи от производства энергии до получения ее потребителями существует несколько звеньев:

  • генератор на электростанции, вырабатывающий электроэнергию напряжением 6,3-24 кВ (есть отдельные агрегаты с большим номинальным напряжением);
  • повышающие подстанции (ПС);
  • сверхдальние и магистральные ЛЭП напряжением 220-1150 кВ;
  • крупные узловые ПС, понижающие напряжение до 110 кВ;
  • ЛЭП 35-110 кВ для передачи электрической энергии на питающие центры;
  • дополнительные понижающие подстанции – питающие центры, где получают напряжение 6-10 кВ;
  • распределительные ЛЭП 6-10 кВ;
  • трансформаторные пункты (ТП), ЦРП, находящиеся рядом с потребителями, для понижения напряжения до 0,4 кВ;
  • низковольтные линии для подведения к домам и другим объектам.

Упрощенная схема передачи электроэнергии

Схемы распределения

ЛЭП бывают воздушными, кабельными и кабельно-воздушными. Для увеличения надежности электрическая мощность в большинстве случаев передается несколькими путями. То есть на шины подстанции подводятся две и более линий.

Существует две схемы распределения электроэнергии 6-10 кВ:

  1. Магистральная, когда линия 6-10 кВ является общей для питания нескольких ТП, которые могут быть расположены на всем ее протяжении. Если при этом магистральная ЛЭП получает питание от двух разных фидеров с обеих сторон, такая схема называется кольцевой. При этом в нормальном режиме работы она питается от одного фидера и отключена от другого коммутационными аппаратами (выключателями, разъединителями);

Магистральная схема с двухсторонним питанием

  1. Радиальная. В этой схеме вся мощность сосредоточена в конце ЛЭП, которая предназначена для электроснабжения единственного потребителя.

Для линий напряжением 35 кВ и выше используют схемы:

  1. Радиальная. Мощность на ПС приходит по одноцепной или двухцепной питающей линии от одной узловой подстанции. Самая экономически выгодная схема – с одной линией, но очень ненадежная. Благодаря двухцепным ЛЭП, создается резервное питание;
  2. Кольцевая. Шины ПС запитываются не менее, чем двумя ЛЭП от независимых источников. При этом на питающих линиях могут существовать ответвления (отпайки), отходящие на другие ПС. Общее число отпаечных ПС должно быть не больше трех для одной ЛЭП.
Читайте также:  Какие огнетушители используют для тушения электропроводки?

Важно! Кольцевую сеть питают не меньше двух узловых подстанций, размещенных, как правило, на значительном расстоянии друг от друга.

Трансформаторные подстанции

Как остановить счетчик электроэнергии

Трансформаторные подстанции наряду с ЛЭП – основная составная часть энергосистемы. Они делятся на:

  1. Повышающие. Находятся вблизи электростанций. Основное оборудование – силовые трансформаторы, повышающие напряжение;
  2. Понижающие. Расположены на других участках электросети, находящихся ближе к потребителям. Содержат понижающие трансформаторы.

Существуют еще преобразовательные ПС, но они не относятся к трансформаторным. Служат для преобразования переменного тока в постоянный, а также получения тока другой частоты.

Основное оборудование трансформаторных ПС:

  1. Распредустройство высокого и низкого напряжения. Оно может быть открытого типа (ОРУ), закрытого типа (ЗРУ) и комплектное (КРУ);
  2. Силовые трансформаторы;
  3. Щит управления, релейный зал, где сосредоточена аппаратура защит и автоматического управления коммутационными аппаратами, сигнализация, измерительные приборы и счетчики электроэнергии. Два последних вида оборудования, как и некоторые виды защит, могут присутствовать и в КРУ;

Щит управления подстанцией

  1. Аппаратура собственных нужд ПС, куда входят трансформаторы собственных нужд (ТСН), понижающие напряжение с 6-10 до 0,4 кВ, шины СН 0,4 кВ с коммутационными аппаратами, батарея аккумуляторов, устройства подзаряда. От СН питаются защиты, освещение ПС, отопление, двигатели обдува трансформаторов (охлаждение) и т. д. На тяговых железнодорожных ПС трансформаторы собственных нужд могут иметь первичное напряжение 27,5 или 35 кВ;
  2. В распредустройствах находятся коммутационные аппараты трансформаторов, питающих и отходящих линий и фидеров 6-10 кВ: разъединители, выключатели (вакуумные, элегазовые, масляные, воздушные). Для питания цепей защит и измерений применяются трансформаторы напряжения (ТН) и тока (ТТ);
  3. Оборудование для защиты от перенапряжений: разрядники, ОПН (ограничители перенапряжений);
  4. Токоограничивающие и дугогасительные реакторы, батареи конденсаторов и синхронные компенсаторы.

Последнее звено понижающих подстанций – трансформаторные пункты (ТП, КТП-комплектные, МТП-мачтовые). Это небольшие устройства, содержащие 1, 2, реже 3 трансформатора, понижающие напряжение иногда с 35, чаще с 6-10 кВ до 0,4 кВ. Со стороны низкого напряжения установлены автоматы. От них отходят линии, непосредственно распределяющие электрическую энергию реальным потребителям.

Комплектная трансформаторная подстанция

Пропускная способность линий электропередачи

Какой счетчик электроэнергии лучше поставить в квартире

При передаче электрической энергии основным показателем является пропускная способность ЛЭП. Она характеризуется значением активной мощности, передаваемой по линии в нормальных рабочих условиях.

Пропускная способность находится в зависимости от напряжения ЛЭП, ее протяженности, размеров сечения, вида линии (КЛ или ВЛ). При этом натуральная мощность, не зависящая от длины ЛЭП, – это активная мощность, которая передается по линии при полной компенсации реактивной составляющей.

Практически таких условий достичь невозможно.

Важно! Максимальная передаваемая мощность для ЛЭП напряжением от 110 кВ и ниже ограничивается только нагревом проводов. На линиях более высокого напряжения учитывается еще статическая устойчивость энергосистемы.

Некоторые значения пропускной способности ВЛ при КПД = 0,9:

  • 110 кВ: натуральная мощность – 30 мВт, максимальная – 50 мВт;
  • 220 кВ: натуральная мощность – 120-135 мВт, максимальная – 350 мВт по устойчивости и 280 мВт по нагреву;
  • 500 кВ: натуральная мощность – 900 мВт, максимальная – 1350 мВт по устойчивости и 1740 мВт по нагреву.

Потери электроэнергии

Не вся электроэнергия, выработанная на электростанции, доходит до потребителя. Потери электроэнергии могут быть:

  1. Технические. Вызываются потерями в проводах, трансформаторах и другом оборудовании на нагрев и из-за других физических процессов;
  2. Несовершенство системы учета на энергопредприятиях;
  3. Коммерческие. Происходят из-за отбора мощности, помимо приборов учета, разницы фактически потребленной мощности и учтенной счетчиком и т. д.

Технологии передачи электроэнергии не стоят на месте. Развивается использование сверхпроводящих кабелей, позволяющих свести потери практически к нулю. Беспроводная передача электроэнергии – уже не фантастика для подзарядки мобильных устройств. А в Южной Корее работают над созданием беспроводной системы передачи энергии для электрифицированного транспорта.

Видео

Источник: https://elquanta.ru/teoriya/peredacha-ehlektroehnergii-na-rasstoyanie.html

Производство электроэнергии в России. Производство, передача и использование электроэнергии :

Производство электроэнергии в мире в наши дни играет огромную роль. Она – стержень государственной экономики любой страны.

Гигантские суммы денег ежегодно вкладываются в производство и использование электроэнергии и научные исследования, связанные с этим.

В повседневной жизни мы постоянно сталкиваемся с ее действием, поэтому современный человек должен иметь представление об основных процессах ее выработки и потребления.

Как получают электроэнергию

Производство электроэнергии осуществляется из других ее видов при помощи специальных устройств. Например, из кинетической. Для этого применяют генератор – прибор, преобразующий механическую работу в электрическую энергию.

Другие существующие способы ее получения – это, например, преобразование излучения светового диапазона фотоэлементами или солнечной батареей. Или производство электроэнергии путем химической реакции. Или использование потенциала радиоактивного распада либо теплоносителя.

Вырабатывают ее на электростанциях, которые бывают гидравлическими, атомными, тепловыми, солнечными, ветряными, геотермальными и проч. В основном все они работают по одной схеме – благодаря энергии первичного носителя определенным устройством вырабатывается механическая (энергия вращения), передаваемая затем в специальный генератор, где и вырабатывается электроток.

Основные виды электростанций

Производство и распределение электроэнергии в большинстве стран ведутся путем строительства и эксплуатации ТЭС – тепловых электростанций.

Их функционирование требует большого запаса органического топлива, условия добычи которого из года в год усложняются, а стоимость растет.

Коэффициент полезной отдачи топлива в ТЭС не слишком высок (в пределах 40%), а число экологически грязных отходов велико.

Все эти факторы снижают перспективность такого способа выработки.

Наиболее экономично производство электроэнергии гидроэнергетическими установками (ГЭС). КПД их доходит до 93%, себестоимость 1 кВт/ч впятеро дешевле других способов. Природный источник энергии таких станций практически неисчерпаем, количество работников – минимально, ими легко управлять. По развитию данной отрасли наша страна – признанный лидер.

К сожалению, темпы развития ограничены серьезными затратами и длительными сроками строительства ГЭС, связанными с их удаленностью от больших городов и магистралей, сезонным режимом рек и трудными условиям работы.

Кроме того, гигантские водохранилища ухудшают экологическую ситуацию – затапливают ценные земли вокруг водоемов.

Использование атомной энергии

В наши дни производство, передача и использование электроэнергии производятся атомными электростанциями – АЭС. Они устроены практически по тому же принципу, что и тепловые.

Главный их плюс – малое количество требующегося топлива. Килограмм обогащенного урана по своей производительности эквивалентен 2,5 тыс. тонн угля. Именно поэтому АЭС теоретически можно строить в любом районе независимо от наличия близлежащих топливных ресурсов.

В настоящее время запасы урана на планете значительно больше, чем минерального горючего, а воздействие АЭС на окружающую природу минимально при условии безаварийной работы.

Обратите внимание

Огромный и серьезный недостаток АЭС – вероятность страшной аварии с непредсказуемыми последствиями, отчего для их бесперебойной работы требуются очень серьезные меры по обеспечению безопасности.

К тому же производство электроэнергии на АЭС регулируется с трудом – как для их запуска, так и для полной остановки понадобится несколько недель.

И практически отсутствуют технологии утилизации опасных отходов.

Что такое электрический генератор

Производство и передача электроэнергии осуществимы благодаря электрогенератору. Это устройство преобразования любых видов энергии (тепловой, механической, химической) в электрическую.

Принцип его действия построен на процессе электромагнитной индукции. ЭДС индуктируется в проводнике, который движется в магнитном поле, пересекает его силовые магнитные линии.

Таким образом, проводник может служить источником электроэнергии.

Основа любого генератора – система электромагнитов, формирующих магнитное поле, и проводников, которые его пересекают. Большинство всех генераторов переменного тока основаны на применении вращающегося магнитного поля. Его неподвижную часть именуют статором, подвижную – ротором.

Понятие трансформатора

Трансформатор – электромагнитное статическое устройство, предназначенное для преобразования одной системы тока в другую (вторичную) при помощи электромагнитной индукции.

Первые трансформаторы в 1876 г. были предложены П. Н. Яблочковым. В 1885 г. венгерскими учеными разработаны промышленные однофазные приборы. В 1889-1891 гг. изобретен трехфазный трансформатор.

Простейший однофазный трансформатор состоит из стального сердечника и пары обмоток. Применяются они для распределения и передачи электроэнергии, ведь генераторы электростанций вырабатывают ее при напряжении от 6 до 24 кВт. Передавать ее выгодно при больших значениях (от 110 до 750 кВт). Для этого на электростанциях устанавливают повышающие трансформаторы.

Как используется электроэнергия

Ее львиная доля идет на снабжение электричеством предприятий промышленности. Производство потребляет до 70% всей вырабатываемой в стране электроэнергии. Эта цифра значительно разнится для отдельных регионов в зависимости от климатических условий и уровня индустриального развития.

Другая статья расходов – снабжение электротранспорта. От электросетей ЭЭС работают подстанции городского, междугороднего, промышленного электротранспорта, использующего постоянный ток. Для транспорта на переменном токе применяются понижающие подстанции, которые тоже потребляют энергию электростанций.

Другой сектор потребления электроэнергии – коммунально-бытовое снабжение. Потребителями здесь являются здания жилых районов любых населенных пунктов. Это дома и квартиры, административные здания, магазины, заведения образования, науки, культуры, здравоохранения, общественного питания и т. д.

Как происходит передача электроэнергии

Производство, передача и использование электроэнергии – три кита отрасли. Причем передать полученную мощность потребителям – самая сложная задача.

“Путешествует” она главным образом посредством ЛЭП – воздушных линий электропередачи. Хотя все чаще начинают применять кабельные линии.

Вырабатывается электроэнергия мощными агрегатами гигантских электростанций, а потребителями ее служат относительно небольшие приёмники, разбросанные по обширной территории.

Существует тенденция концентрировать мощности, связанная с тем, что с их увеличением уменьшаются относительные затраты возведения электростанций, а следовательно, и себестоимость получаемого киловатт-часа.

Единый энергокомплекс

На принятие решения о размещении крупной электростанции влияет ряд факторов.

Это вид и количество имеющихся в наличии ресурсов, доступность транспортировки, климатические условия, включенность в единую энергосистему и т. д.

Чаще всего электростанции строятся вдали от крупных очагов потребления энергии. Эффективность ее передачи на немалые расстояния влияет на успешную работу единого энергетического комплекса огромной территории.

Производство и передача электроэнергии должны происходить с минимальным количеством потерь, главная причина которых – нагрев проводов, т. е. увеличение внутренней энергии проводника. Для сохранения передаваемой на большие расстояния мощности нужно пропорционально увеличить напряжение и уменьшить в проводах силу тока.

Что такое ЛЭП

Математические расчеты показывают, что величина потерь в проводах на нагрев обратно пропорциональна квадрату напряжения. Именно поэтому электроэнергию на большие расстояния передают при помощи ЛЭП – высоковольтных линий электропередач. Между их проводами напряжение исчисляется десятками, а порой сотнями тысяч вольт.

Электростанции, расположенные неподалеку друг от друга, объединяются в единую энергосистему именно при помощи ЛЭП. Производство электроэнергии в России и ее передача ведутся путем централизованной энергетической сети, в которую входит огромное количество электростанций. Единое управление системой гарантирует постоянную подачу потребителям электроэнергии.

Немного истории

Как формировалась единая электрическая сеть в нашей стране? Попробуем заглянуть в прошлое.

До 1917 года производство электроэнергии в России велось недостаточными темпами. Страна отставала от развитых соседей, что отрицательно сказывалось на экономике и обороноспособности.

Читайте также:  Напряжение на корпусе духового шкафа

После Октябрьской революции проект электрификации России разрабатывался Государственной комиссией по электрификации России (сокращенно ГОЭЛРО), возглавляемой Г. М. Кржижановским. С ней сотрудничали более 200 ученых и инженеров. Контроль осуществлялся лично В. И. Лениным.

В 1920 г. был готов «План электрификации РСФСР», рассчитанный на 10-15 лет. Он включал восстановление прежней энергосистемы и строительство 30 новых электростанций, оборудованных современными турбинами и котлами.

Главная идея плана – задействовать гигантские отечественные гидроэнергоресурсы. Предполагались электрификация и коренная реконструкция всего народного хозяйства.

Упор делался на рост и развитие тяжёлой промышленности страны.

Знаменитый план ГОЭРЛО

Начиная с 1947 года СССР стал первым в Европе и вторым в мире производителем электроэнергии. Именно благодаря плану ГОЭЛРО была сформирована в кратчайшие сроки вся отечественная экономика. Производство и потребление электроэнергии в стране вышло на качественно новый уровень.

Выполнение намеченного стало возможным благодаря сочетанию сразу нескольких важных факторов: высокого уровня научных кадров страны, сохранившегося с дореволюционных времен материального потенциала России, централизации политической и экономической власти, свойству российского народа верить “верхам” и воплощать провозглашаемые идеи.

План доказал эффективность советской системы централизованной власти и государственного управления.

Результаты плана

В 1935 году принятая программа была выполнена и перевыполнена. Построено 40 электростанций вместо запланированных 30, введено мощностей почти втрое больше, чем предусматривалось по плану. Возведено 13 электроцентралей мощностью по 100 тыс. кВт каждая. Общая мощность российских ГЭС составила около 700 000 кВт.

В эти годы были возведены крупнейшие объекты стратегического значения, такие как всемирно известная Днепровская ГЭС. По суммарным показателям Единая советская энергосистема превзошла аналогичные системы самых развитых стран Нового и Старого Света. Производство электроэнергии по странам Европы в те годы значительно отставало от показателей СССР.

Развитие села

Если до революции в деревнях России электричества практически не существовало (небольшие электростанции, устанавливаемые крупными землевладельцами не в счет), то с реализацией плана ГОЭЛРО благодаря использованию электроэнергии сельское хозяйство получило новый толчок к развитию. На мельницах, лесопилках, зерноочистительных машинах появились электродвигатели, что способствовало модернизации отрасли.

Помимо того, электричество прочно вошло в быт горожан и селян, в буквальном смысле вырвав “темную Россию” из мрака.

Источник: https://www.syl.ru/article/175143/new_proizvodstvo-elektroenergii-v-rossii-proizvodstvo-peredacha-i-ispolzovanie-elektroenergii

Получение и передача электроэнергии: источники генерации энергии, передача ее на большие расстояния

Как и любой вид энергии, электрическая является силой, которая сообщается разными предметами друг другу. Получение и передача электроэнергии стала основным движущим фактором развития производства. Особенно актуально такое перемещение на большие расстояния. Разрабатывается возможность переброски энергетического потока без проводов, что создает большие перспективы в будущем.

Прежде чем начать процесс передачи электроэнергии потребителю, необходимо ее получить. Этим вопросом занимаются электростанции, которых существует несколько видов:

  1. Тепловые. На первом этапе ведется сжигание органического топлива. Это может быть уголь, мазут или торф. Возникающая тепловая энергия преобразуется в механическую и только потом в электрическую. В некоторых случаях выработанное тепло сразу поступает в теплоцентрали и подается на производство.
  2. Гидроэлектростанции. Такие комплексы устанавливаются в местах протекания больших рек. Построенная плотина поднимает с одной стороны уровень воды, образуя водопад. Станция представляет собой сложную техническую конструкцию. Движущийся поток вращает турбины, которые превращают его силу в электрическую составляющую.
  3. Атомные станции. Здесь основным оборудованием является реактор. В нем происходит цепная реакция распада ядер тяжелых элементов. В качестве топлива используется плутоний или уран. Получаемое ядерное тепло затем преобразуется в электрическую энергию. Это наиболее перспективное направление развития, поскольку мировые ядерные запасы значительно превышают органические залежи топлива.

Движение электричества

Дальнейшая передача электрической энергии ведется по сетям. Они представляют собой комплекс оборудования, которое отвечает за распределение и поставку электричества потребителю. Их существует несколько разновидностей:

  1. Общие сети. Они обслуживают сельское хозяйство и производство.
  2. Контактные. Это выделенная группа, которая обеспечивает поставку электроэнергии движущемуся транспорту. Сюда входят поезда и трамваи.
  3. Для обслуживания удаленных объектов и инженерных коммуникаций.
  4. Автономные сети. Они обеспечивают электроэнергией крупные мобильные единицы. Это самолеты, морские суда и космические аппараты.

Передача на большие расстояния

Актуальность передачи электроэнергии на расстояние обуславливается тем, что электростанции снабжены мощным оборудованием, дающим на выходе большие показатели. Потребители же ее маломощные и разбросаны на большой территории.

Строительство крупнейшего терминала обходится дорого, поэтому наблюдается тенденция к концентрации мощностей. Это существенно снижает затраты. Кроме того, значение имеет место размещения.

Включается ряд факторов: близость к ресурсам, стоимость транспортировки и возможность работы в единой энергетической системе.

Чтобы понять, как осуществляется передача электроэнергии на большие расстояния, следует знать, что линии электропередач бывают постоянного и переменного тока. Главная характеристика — это их пропускная способность. Потери наблюдаются в процессе нагрева проводов или дальности расстояния. Передача осуществляется по следующей схеме:

  1. Электростанция. Она является источником образования электроэнергии.
  2. Повышающий трансформатор, который обеспечивает увеличение показателей до необходимых величин.
  3. Понижающий трансформатор. Он устанавливается на распределительных станциях и понижает параметры для подачи в частный сектор.
  4. Подача энергии в жилые дома.

Линии постоянного тока

В настоящее время больше отдается предпочтение передаче электроэнергии постоянным током. Это связано с тем, что все происходящие внутри процессы не носят волновой характер. Это значительно облегчает транспортировку энергии.

К преимуществам передачи постоянного тока относится:

  • небольшая себестоимость;
  • малая величина потерь;

Поставка переменного тока

К преимуществам транспортировки переменного тока относится легкость его трансформации.

Осуществляется это при помощи приборов — трансформаторов, которые не отличаются сложностью в изготовлении. Конструкция электродвигателей такого тока значительно проще.

Технология позволяет формировать линии в единую энергосистему. Этому способствует возможность создания выключателей в месте строительства ответвлений.

Источник: https://220v.guru/vse-ob-elektroenergii/poluchenie-i-peredacha-elektroenergii-na-rasstoyanie-opisanie-processa.html

Производство, передача и использование электроэнергии – Класс!ная физика

«Физика – 11 класс»

Производство электроэнергии

Производится электроэнергия на электрических станциях в основном с помощью электромеханических индукционных генераторов. Существует два основных типа электростанций: тепловые и гидроэлектрические.

Различаются эти электростанции двигателями, вращающими роторы генераторов.

На тепловых электростанциях источником энергии является топливо: уголь, газ, нефть, мазут, горючие сланцы. Роторы электрических генераторов приводятся во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания.

Тепловые паротурбинные электростанции – ТЭС наиболее экономичны.

В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кинетическая энергия струй пара передается ротору. Вал турбины жестко соединен с валом генератора.

Паровые турбогенераторы весьма быстроходны: число оборотов ротора составляет несколько тысяч в минуту.

Важно

КПД тепловых двигателей увеличивается с повышением начальной температуры рабочего тела (пара, газа). Поэтому поступающий в турбину пар доводят до высоких параметров: температуру — почти до 550 °С и давление — до 25 МПа.

Коэффициент полезного действия ТЭС достигает 40%. Большая часть энергии теряется вместе с горячим отработанным паром.

Тепловые электростанции — ТЭЦ позволяют значительную часть энергии отработанного пара использовать на промышленных предприятиях и для бытовых нужд. В результате КПД ТЭЦ достигает 60—70%.

В России ТЭЦ дают около 40% всей электроэнергии и снабжают электроэнергией сотни городов.

На гидроэлектростанциях – ГЭС для вращения роторов генераторов используется потенциальная энергия воды.

Роторы электрических генераторов приводятся во вращение гидравлическими турбинами.
Мощность такой станции зависит от создаваемого плотиной напора и массы воды, проходящей через турбину в каждую секунду.

Гидроэлектростанции дают около 20% всей вырабатываемой в нашей стране электроэнергии.

Атомные электростанции – АЭС в России дают около 10% электроэнергии.

Использование электроэнергии

Главным потребителем электроэнергии является промышленность – 70% производимой электроэнергии.
Крупным потребителем является также транспорт.

Большая часть используемой электроэнергии сейчас превращается в механическую энергию, т.к. почти все механизмы в промышленности приводятся в движение электрическими двигателями.

Передача электроэнергии

Электроэнергию не удается консервировать в болыпих масштабах. Она должна быть потреблена сразу же после получения.

Поэтому возникает необходимость в передаче электроэнергии на большие расстояния.

Передача электроэнергии связана с заметными потерями, так как электрический ток нагревает провода линий электропередачи. В соответствии с законом Джоуля — Ленца энергия, расходуемая на нагрев проводов линии, определяется формулой

где
R — сопротивление линии,
U — передаваемое напряжение,
Р — мощность источника тока.

При очень большой длине линии передача энергии может стать экономически невыгодной.
Значительно снизить сопротивление линии R практически весьма трудно, поэтому приходится уменьшать силу тока I.

Так как мощность источника тока Р равна произведению силы тока I на напряжение U, то для уменьшения передаваемой мощности нужно повысить передаваемое напряжение в линии передачи.

Для этого на крупных электростанциях устанавливают повышающие трансформаторы.
Трансформатор увеличивает напряжение в линии во столько же раз, во сколько раз уменьшает силу тока.

Совет

Чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Генераторы переменного тока настраивают на напряжения, не превышающие 16—20 кВ. Более высокое напряжение потребовало бы принятия сложных специальных мер для изоляции обмоток и других частей генераторов.

Далее для непосредственного использования электроэнергии потребителем необходимо понижать напряжение.

Это достигается с помощью понижающих трансформаторов.

Понижение напряжения (и соответственно увеличение силы тока) осуществляются поэтапно.

При очень высоком напряжении между проводами может начаться разряд, приводящий к потерям энергии.
Допустимая амплитуда переменного напряжения должна быть такой, чтобы при заданной площади поперечного сечения провода потери энергии вследствие разряда были незначительными.

Электрические станции объединены высоковольтными линиями электропередачи, образуя общую электрическую сеть, к которой подключены потребители. Такое объединение, называемое энергосистемой, дает возможность распределять нагрузки потребления энергии. Энергосистема обеспечивает бесперебойность подачи энергии потребителям.

Сейчас в нашей стране действует Единая энергетическая система европейской части страны.

Использование электроэнергии

Потребность в электроэнергии постоянно увеличивается как в промышленности, на транспорте, в научных учреждениях, так и в быту. Удовлетворить эту потребность можно двумя основными способами.

Первый — строительство новых мощных электростанций: тепловых, гидравлических и атомных. Однако строительство крупной электростанции требует нескольких лет и больших затрат. Кроме того, тепловые электростанции потребляют невозобновляемые природные ресурсы: уголь, нефть и газ. Одновременно они наносят большой ущерб равновесию на нашей планете.

Передовые технологии позволяют удовлетворить потребности в электроэнергии другим способом.

Обратите внимание

Второй – эффективное использование электроэнергии: современные люминесцентные лампы, экономия освещения.

Большие надежды возлагаются на получение энергии с помощью управляемых термоядерных реакций.

Приоритет должен быть отдан увеличению эффективности использования электроэнергии, а не повышению мощности электростанций.

Источник: «Физика – 11 класс», учебник Мякишев, Буховцев, Чаругин

Следующая страница «Волновые явления»
Назад в раздел «Физика – 11 класс, учебник Мякишев, Буховцев, Чаругин»

Производство, передача и использование электрической энергии. Физика, учебник для 11 класса – Класс!ная физика

Генерирование электрической энергии — Трансформаторы — Производство, передача и использование электрической энергии

Источник: http://class-fizika.ru/11_35.html

Ссылка на основную публикацию
Adblock
detector