На что влияет сопротивление резисторов в фильтре?

Резисторы, ток и напряжение

В этой статье мы рассмотрим резистор и его взаимодействие с напряжением и током, проходящим через него. Вы узнаете, как рассчитать резистор с помощью специальных формул. В статье также показано, как специальные резисторы могут быть использованы в качестве датчика света и температуры.

Представление об электричестве

Новичок должен быть в состоянии представить себе электрический ток. Даже если вы поняли, что электричество состоит из электронов, движущихся по проводнику, это все еще очень трудно четко представить себе. Вот почему я предлагаю эту простую аналогию с водной системой, которую любой желающий может легко представить себе и понять, не вникая в законы.

Обратите внимание, как электрический ток похож на поток воды из полного резервуара (высокого напряжения) в пустой(низкое напряжение). В этой простой аналогии воды с электрическим током, клапан аналогичен токоограничительному резистору.

Обратите внимание

Из этой аналогии можно вывести некоторые правила, которые вы должны запомнить навсегда: – Сколько тока втекает в узел, столько из него и вытекает – Для того чтобы протекал ток, на концах проводника должны быть разные потенциалы. – Количество воды в двух сосудах можно сравнить с зарядом батареи.

Когда уровень воды в разных сосудах станет одинаковым, она перестанет течь, и при разряде аккумулятора, разницы между электродами не будет и ток перестанет течь.

– Электрический ток будет увеличиваться при уменьшении сопротивления, как и скорость потока воды будет увеличиваться с уменьшением сопротивления клапана.

Я мог бы написать гораздо больше умозаключений на основе этой простой аналогии, но они описаны в законе Ома ниже.

Резистор

Резисторы  могут быть использованы для контроля и ограничения тока, следовательно, основным параметром резистора является его сопротивление, которое измеряется в Омах. Не следует забывать о мощности резистора, которая измеряется в ваттах (Вт), и показывает, какое количество энергии резистор может рассеять без перегрева и выгорания.

Важно также отметить, что резисторы используются не только для ограничения тока, они также могут быть использованы в качестве делителя напряжения для получения низкого напряжения из большего.

Некоторые датчики основаны на том, что сопротивление варьируется в зависимости от освещённости, температуры или механического воздействия, об этом подробно написано в конце статьи.

Закон Ома

Понятно, что эти 3 формулы выведены из основной формулы закона Ома, но их надо выучить для понимания более сложных формул и схем. Вы должны быть в состоянии понять и представить себе смысл любой из этих формул.

Например, во второй формуле показано, что увеличение напряжения без изменения сопротивления приведет к росту тока.

Важно

Тем не менее, увеличение тока не увеличит напряжение (хотя это математически верно), потому что напряжение – это разность потенциалов, которая будет создавать электрический ток, а не наоборот (см. аналогию с 2 емкостями для воды).

Формула 3 может использоваться для вычисления сопротивления токоограничивающего резистора при известном напряжении и токе. Это лишь примеры, показывающие важность этого правила. Вы сами узнаете, как использовать их после прочтения статьи.

Последовательное и параллельное соединение резисторов

Понимание последствий параллельного или последовательного подключения резисторов очень важно и поможет вам понять и упростить схемы с помощью этих простых формул для последовательного и параллельного сопротивления:

В этом примере схемы, R1 и R2 соединены параллельно, и могут быть заменены одним резистором R3 в соответствии с формулой:
В случае  с 2-мя параллельно соединёнными резисторами, формулу можно записать так:

Кроме того, что эту формулу можно использовать для упрощения схем, она может быть использована для создания номиналов резисторов, которых у вас нет. Отметим также, что значение R3 будет всегда меньше, чем у 2 других эквивалентных резисторов, так как добавление параллельных резисторов обеспечивает дополнительные пути

электрическому току, снижая общее сопротивление цепи.

Последовательно соединённые резисторы могут быть заменены одним резистором, значение которого будет равно сумме этих двух, в связи с тем, что это соединение обеспечивает дополнительное сопротивление тока. Таким образом, эквивалентное сопротивление R3 очень просто вычисляется: R3=R1+R2

В интернете есть удобные он-лайн калькуляторы для расчета последовательного и параллельного соединения резисторов.

Токоограничивающий резистор

Самая основная роль токоограничивающих резисторов – это контроль тока, который будет протекать через устройство или проводник. Для понимания их работы, давайте сначала разберём простую схему, где лампа непосредственно подключена к 9В батареи.

Совет

Лампа, как и любое другое устройство, которое потребляет электроэнергию для выполнения определенной задачи (например, светоизлучение) имеет внутреннее сопротивление, которое определяет его текущее потребление.

Таким образом, отныне, любое устройство может быть заменено на эквивалентное сопротивление.

Теперь, когда лампа будет рассматриваться как резистор, мы можем использовать закон Ома для расчета тока, проходящего через него. Закон Ома гласит, что ток, проходящий через резистор равен разности напряжений на нем, поделенное на сопротивление резистора: I=V/R или точнее так:
I=(V1-V2)/R
где (V1-V2) является разностью напряжений до и после резистора.

Теперь обратите внимание на рисунок выше, где добавлен токоограничительный резистор. Он будет ограничивать ток идущий к лампе, как это следует из названия. Вы можете контролировать, количество тока протекающего через лампу, просто выбрав правильное значение R1. Большой резистор будет сильно снижать ток, а небольшой резистор менее сильно (так же, как в нашей аналогии с водой).

Математически это запишется так:

Из формулы следует, что ток уменьшится, если значение R1 увеличится. Таким образом, дополнительное сопротивление может быть использовано для ограничения тока. Однако важно отметить, что это приводит к нагреву резистора, и вы должны правильно рассчитать его мощность, о чем будет написано дальше.

Вы можете воспользоваться он-лайн калькулятором для расчета токоограничительного резистора светодиода.

Резисторы как делитель напряжения

Как следует из названия, резисторы могут быть использованы в качестве делителя напряжения, другими словами, они могут быть использованы для уменьшения напряжения путем деления его. Формула:

Если оба резистора имеют одинаковое значение (R1=R2=R), то формулу можно записать так:

Другой распространенный тип делителя, когда один резистор подключен к земле (0В), как показано на рисунке 6B. Заменив Vb на 0 в формуле 6А, получаем:

Узловой анализ

Теперь, когда вы начинаете работать с электронными схемами, важно уметь их анализировать и рассчитывать все необходимые напряжения, токи и сопротивления. Есть много способов для изучения электронных схем, и одним из наиболее распространенных методов является узловой, где вы просто применяете набор правил, и рассчитываете шаг за шагом все необходимые переменные.

Упрощенные правила узлового анализа

Определение узла

Обратите внимание

Узел – это любая точка соединения в цепи. Точки, которые связаны друг с другом, без других компонентов между ними рассматриваются как единый узел. Таким образом, бесконечное число проводников в одну точку считаются одним узлом. Все точки, которые сгруппированы в один узел, имеют одинаковые напряжения.

Определение ветви

Ветвь представляет собой набор из 1 и более компонентов, соединенных последовательно, и все компоненты, которые подсоединены последовательно к этой цепи, рассматриваются как одна ветвь.

Все напряжения обычно измеряются относительно земли напряжение на которой всегда равно 0 вольт.

Ток всегда течет от узла с более высоким напряжением на узел с более низким.

Напряжение на узле может быть высчитано из напряжения около узла, с помощью формулы:
V1-V2=I1*(R1) Перенесем:

V2=V1-(I1*R1)

Где V2 является искомым напряжением, V1 является опорным напряжением, которое известно, I1 ток, протекающий от узла 1 к узлу 2 и R1 представляет собой сопротивление между 2 узлами.

Точно так же, как и в законе Ома, ток ответвления можно определить, если напряжение 2х соседних узлах и сопротивление известно:
I 1=(V1-V2)/R1

Текущий входящий ток узла равен текущему выходящему току, таким образом, это можно записать так: I 1+ I3=I2

Важно, чтобы вы были в состоянии понимать смысл этих простых формул. Например, на рисунке выше, ток протекает от V1 до V2, и, следовательно, напряжение V2 должно быть меньше, чем V1.
Используя соответствующие правила в нужный момент, вы сможете быстро и легко проанализировать схему и понять её. Это умение достигается практикой и опытом.

Расчет необходимой мощности резистора

При покупке резистора вам могут задать вопрос: “Резисторы какой мощности вы хотите?” или могут просто дать 0.25Вт резисторы, поскольку они являются наиболее популярными. Пока вы работаете с сопротивлением больше 220 Ом, и ваш блок питания обеспечивает 9В или меньше, можно работать с 0.125Вт или 0.

Важно

25Вт резисторами. Но если напряжение более 10В или значение сопротивления менее 220 Ом, вы должны рассчитать мощность резистора, или он может сгореть и испортить прибор.

Чтобы вычислить необходимую мощность резистора, вы должны знать напряжение через резистор (V) и ток, протекающий через него (I): P=I*V

где ток измеряется в амперах (А), напряжение в вольтах (В) и Р – рассеиваемая мощность в ваттах (Вт)

На фото предоставлены резисторы различной мощности, в основном они отличаются размером.

Разновидности резисторов

Резисторы могут быть разными, начиная от простых переменных резисторов (потенциометров) до реагирующих на температуру, свет и давление. Некоторые из них будут обсуждаться в этом разделе.

Переменный резистор (потенциометр)

На рисунке выше показано схематическое изображение переменного резистора. Он часто упоминается как потенциометр, потому что он может быть использован в качестве делителя напряжения.

Они различаются по размеру и форме, но все работают одинаково.

Выводы справа и слева  эквивалентны фиксированной точке (например, Va и Vb на рисунке выше слева), а средний вывод является подвижной частью потенциометра, а также используется для изменения соотношения сопротивления на левом и правом выводах.

Следовательно, потенциометр относится к делителям напряжения, которым можно выставить любое напряжение от Va к Vb.
Кроме того, переменный резистор может быть использован как тока ограничивающий путем соединения выводов Vout и Vb, как на рисунке выше (справа).

Совет

Представьте себе, как ток будет течь через сопротивление от левого вывода к правому, пока не достигнет подвижной части, и пойдет по ней, при этом, на вторую часть пойдет очень мало тока. Таким образом, вы можете использовать потенциометр для регулировки тока любых электронных компонентов, например лампы.

LDR (светочувствительные резисторы) и термисторы

Есть много датчиков основанных на резисторах, которые реагируют на свет, температуру или давление. Большинство из них включаются как часть делителя напряжения, которое изменяется в зависимости от сопротивления резисторов, изменяющегося под воздействием внешних факторов.

Терморезисторы

Фоторезистор (LDR)

Как вы можете видеть на рисунке 11A, фоторезисторы различаются по размеру, но все они являются резисторами, сопротивление которых уменьшается под воздействием света и увеличивается в темноте.

К сожалению, фоторезисторы достаточно медленно реагируют на изменение уровня освещённости, имеют достаточно низкую точность, но очень просты в использовании и популярны.

Как правило, сопротивление фоторезисторов может варьироваться от 50 Ом при солнце, до более чем 10МОм в абсолютной темноте.

Как мы уже говорили, изменение сопротивления изменяет напряжение с делителя. Выходное напряжение можно рассчитать по формуле:

Если предположить, что сопротивление LDR изменяется от 10 МОм до 50 Ом, то Vout будет соответственно от 0.005В до 4.975В.

Термистор похож на фоторезистор, тем не менее, термисторы имею гораздо больше типов, чем фоторезисторы, например, термистор может быть либо с отрицательным температурным коэффициентом (NTC), сопротивление которого уменьшается с повышением температуры, или положительным температурным коэффициентом (PTC), сопротивление которого будет увеличиваться с повышением температуры. Сейчас термисторы реагируют на изменение параметров среды очень быстро и точно.

Схемотехническое обозначение резисторов

Обратите внимание

Про определение номинала резистора используя цветовую маркировку можно почитать здесь.

Оригинал статьи

Источник: http://cxem.net/beginner/beginner87.php

Как подбирать резисторы?

Минимальный набор параметров, который следует знать при выборе резистора — это номинальное сопротивление, допусимая мощность рассеивания, максимально допустимое напряжение. Но есть еще и расширенный набор характеристик, которые можно учитывать.

Читайте также:  Рейтинг производителей холодильников по качеству и надежности

Для нас, радиогубителей, это излишняя информация. Но плох тот радиогубитель, который не хочет стать генералом хочет знать мало.

Расширенный список факторов, котоыре следует учитывать при выборе резистора:

  1. Номинальное и предельно допустимые значения сопротивлений
  2. Допустимая мощность рассеивания
  3. Максимально допустимое напряжение
  4. Допуски и точность
  5. Температурный коэффициент
  6. Коэффициент напряжения
  7. Шум
  8. Габариты
  9. Паразитные ёмкость и индуктивность
  10. Дрейф
  11. Частотные характеристики
  12. Стоимость
  13. Максимальная температура работы 

Номинальное значение сопротивления и допуск

Не бывает резисторов со 100% точным значение сопротивления. Это миф. На 0.5% да отличается. Не дошла пока что технолоия до такого уровня. Поэтому подбирая резисторы для своего устройства следует знать, что значение их номинала может отличаться от заявленного маркировкой на от 0.5% до 10%.

Поэтому при покупке следует внимательно читать какой у этих резисторов допуск на точность. Есть ещё одна особенность, связання с точностью номинала резистора. Чем меньше допуск (т.е выше точность номинала), тем уже рабочий диапазон температур. Практически все электронные компоненты зависят от температуры.

И с её изменением меняется их номинал. Но об этом чуть позже.Я общеал рассказать как можно увеличить точность резистора. Это очень легко. К примеру, у нас есть резистор с номинало по маркировке в 30кОм с допуском 20%. Измеряем, а на деле он оказался 24кОм.

Что делать? Значит надо последовательно с этим резистором включить второй на 6 кОм. Выбираем наиболее близкий по значению к 6 кОм: 4.7 +- 20%

Хорошо, но почему я сказал, что допуск уменьшится? Давай посчитаем.

  • Rmax = 24 + 4.7*1.2 = 29.64
  • Rmin = 24 + 4.7*.8 = 27.75

Если начальный разброс был от 24 до 36 кОм, то теперь он от 27.75 до 29.64. Это мы рассмотрели случай, когда исходное сопротивление было меньше требуемого. В случае, если оно больше (к примеру, 36 кОм) резисторы следует ставить параллельно.

Допустимая мощность рассеивания

Как я уже писал ранее, если по резистору протекает электрический ток, то он нагревается. Чем больше ток, тем “мощней” надо брать резистор. Маломощный резистор при протекании большого ток просто сгорит.

Полыхнет синим пламенем, попрощается и умрёт. Резисторы выпускаются расчитанные на: 1/6Вт, 1/4Вт, 1/2Вт, 1Вт, 2Вт, 5Вт, 7Вт, 10Вт и т.д.

Как мы помним из закона Ома: P=I2*R — помните и пользуйтесь этим законом, он спасает жизни!

Максимально допустимое напряжение

Если приложить слишком большое напряжение к резистору, то можно превысить его допустимую мощность. Получим чих-пых, синее пламя и дым.

Пример. Какое максимальное напряжение можно приложить к резистору мощностью 1/4 Вт? Пользуемся законом Ома: 1/4 = 2502/R = 250 кОм. 

Температурный коэффициент

Температура влияет на все электронные детали. На какие-то больше, на какие-то меньше. Резисторы не исключение. Резисторы имеют специальный коэффициент ТКС. Он определяет как изменится сопротивление резистора с изменением температуры.

 Желательно подбирать резисторы со схожим значением ТКС. Но в радиогубительских конструкциях радиолюбители могут не заморачиваться. Пусть об этом греют голову профессионалы.

Для них это дело чести, если финансирование позволяет, конечно 🙂

Шум в резисторах

При температуре выше абсолютного нуля в радиодеталях появляется случайное движение электронов. А движение электронов это ток. Такие случайны токи называются шумом. Их значение очень мало. Но чем выше частота или точность собираемого прибора, тем больше следует на них обращать внимание. 

Шумы в резисторах зависят от сопротивления, частоты и температуры:  Uшум = √ 4kTRπf  — формулы бояться не следует. Всё равно пользоваться не будете =) Так как обычно графики распределния шумов деталей пишутся в паспортах к ним (или в даташитах, как сейчас говорят). Так что можно посмотреть и оценить пригодность резистора к своему устройству.

Высокие частоты

ВЧ резисторы отличаются от обычных. Так как на высоких частотах сильней проявляются паразитные ёмкости и индуктивности резистора. Поэтому для ВЧ устройств следует брать соответствубщие резисторы. Если вы не хотите получить дым или просто неработающее устройство.
На этом простой ликбез заканчивается. Пользуйтесь и применяйте резисторы с умом! 

Источник: http://mp16.ru/blog/kak-vyibrat-rezistor/

Стабильность резисторов в условиях эксплуатации

Воздействия эксплуатационных факторов в процессе испытаний и работы резисторов в составе аппаратуры, а также в условиях хранения изделий и аппаратуры приводят к изменению их параметров, в первую очередь к изменению основного параметра — омического сопротивления.

Изменение сопротивления резисторов складывается из обратимого временного изменения сопротивления, обусловленного наличием тем­пературного коэффициента сопротивления и шунтирующим влиянием проводимости изоляционных материалов и воздуха (наличие влаги на поверхности резистора, ионизация воздушного промежутка), и необра­тимого (остаточного) изменения сопротивления. Наибольшие необратимые изменения сопротивления резисторов вызываются электрической нагрузкой, повышенной температурой и повышенной влажностью окружающей среды и в ряде случаев действием проникающей радиации.

Характер действия электрической нагрузки и температуры на резисторы идентичен (тепловое старение).

Однако за счет локальных перегревов в резистивном элементе и контактных узлах повышение электрической нагрузки приводит, как правили, к большему изменению сопротивления, чем соответствующее повышение окружающей темпера­туры.

Важно

Степень влияния электрической нагрузки и температуры на пара­метры резисторов зависит от конструктивного исполнения резисторов, примененных материалов и особенностей технологии их производства.

Среди непроволочных резисторов наиболее устойчивыми кдей­ствию данных факторов являются углеродистые, тонкослойные керметные (металлодиэлектрические) и металлоокисные резисторы.

Величина изменения сопротивления этих резисторов зависит от соотношения между интенсивностями различных компонентов старения, которые могут приводить как к уменьшению (за счет структурных изменений про­водящего элемента, выделения из него летучих веществ, отвердевания защитного покрытия), так и к увеличению сопротивления (за счет окис­ления проводящего материала и переходных контактов, абсорбции га­зов и паров из окружающей среды). Уменьшение сопротивления металло-диэлектрических резисторов (МЛТ, МТ и др.) чаще всего наблюдается при эксплуатации резисторов в облегченном тепловом режиме, когда преимущественное значение имеют отрицательные компоненты старе­ния. Углеродистые резисторы (ВС, 61-4 и др.) из-за недостаточной плот­ности проводящего слоя могут уменьшать свое сопротивление в течение длительного времени {сотни—тысячи часов) и в предельно допустимых по нормативно-технической документации (НТД) нагрузочных ре­жимах.

Стабильность композиционных резисторов определяется в основ­ном стабильностью связующих диэлектрических материалов, входящих в состав резистивной композиции.

Наибольшей нестабильностью отличаются композиционные резиcтopы с проводящим элементом на органической основе (КИМ, КЛМ, СП, СПЗ-6, СПЗ-10М и др.

) Происходящие в процессе эксплуатации отверждение и объемная усадка связующего материала приводят к уменьшению сопротивления, а его термоокислительная деструкция — к увеличению сопротивления.

Процесс полимеризации заканчивается обычно через несколько сотен часов и более в зависимости от теплового режима резистора, после чего начинается незначительное непрерывное возрастание сопротивления за счет разрушения связующей основы. Среди композиционных переменных резисторов наиболее стабильны керметные резисторы.

Изменение сопротивления проволочных резисторов определяется процессами старения проволоки и контактных узлов, среди которых основную роль играют окислительные процессы, приводящие к увеличению сопротивления.

В начальный период эксплуатации проволочных резисторов при небольших тепловых и электрических нагрузках, когда процессы окисления замедлены, может иметь место уменьшение сопротивления, связанное со снятием внутренних напряжений в проволоке и 
изменением ее микроструктуры.

Совет

Снижение электрической прочности эмалевого покрытия проводов в результате его термоокислительной деструкции приводит к замыканию витков намотки и уменьшению сопротивления резисторов с многослойной намоткой.

Прохождение электрического токавызывает интенсификацию тепловых процессов в дефектных местах любого резистивного элемента независимо от использованных материалов и технологии его изготовления.

Локальные перегревы приводят к увеличению сопротивления рези­сторов в результате окисления околодефектных участков проводящего элемента, а при высоких уровнях перегревов происходит его перегора­ние (полная потеря проводимости).

Повышенная влажность вызывает, как правило, увеличение сопро­тивления резистора. Наибольшие необратимые изменения характерны для композиционных (на органической связке) и углеродистых резисто­ров.

Во влажной среде происходит набухание органических связующих; влага, внедряясь в структуру резистивного материала непроволочных резисторов, нарушает контакты между межкристаллическими прослой­ками или зернами проводящего элемента, проникает в контактные узлы, вызывая коррозию контактной арматуры.

К действию влаги особенно чувствительны электрически слабо нагруженные углеродистые, металлодиэлектрические и металлоокисные резисторы со спиральной нарезкой проводящего слоя (в частности, высокоомные резисторы), материал которого окисляется атомарным кисло­родом, выделяющимся при электролизе поглощенной влаги. Электро­химическое разрушение может привести к полной потере прово­димости.

Необратимые изменения сопротивления проволочных резисторов при эксплуатации во влажной среде невелики, Однако при нахождении токопроводящих деталей резисторов под напряжением может иметь место электрохимическая коррозия проводов, протекающая тем интен­сивнее, чем меньше сопротивление изоляции, выше влажность и концентрация агрессивных примесей в окружающей среде. В результате может произойти обрыв провода намотки.

Объемное увлажнение изоляционных деталей в условиях повышен­ной влажности приводит к снижению сопротивления изоляции резисто­ров. Скорость проникновения влаги зависит от влаямостных характе­ристик изоляционных материалов (коэффициента диффузии влаги, растворимости и влагопроницаемости), толщины защитного покрытия, тем­пературы и влажности окружающей среды.

Характер и степень изменения сопротивления резисторов под воз­действием гамма- и нейтронного излучения зависят от характеристик излучения, конструктивных и технологических особенностей резисто­ров и примененных в них материалов.

В результате ионизации вещества в материалах конструкции рези­стора и в окружающем его воздухе протекают ионизационные токи, резко увеличивающие шунтирующее влияние проводящих материалов изоля­ционного основания, защитного покрытия и воздуха и вызывающие вре­менное уменьшение сопротивления резисторов. Эффект шунтирования тем существеннее, чем интенсивнее излучение, а относительная доля шунтирования увеличивается с увеличением номинального сопротивле­ния резистора.

Обратите внимание

Необратимые изменения параметров резисторов, обусловленные устойчивыми изменениями характеристик материалов, использованных в конструкции резисторов, зависят как от величины общей поглощен­ной дозы гамма-излучения, так и от величины нейтронных потоков и их энергетического спектра.

Причинами необратимых изменений сопротивления углеродистых пленочных резисторов могут быть образования дефектов структуры и химические изменения резистивного материала (увеличение сопротив­ления), композиционных резисторов — нарушение структуры связую­щих органических материалов в проводящей композиции (уменьшение сопротивления). Наиболее радиационно-стойкими являются проволоч­ные резисторы, параметры которых не изменяются при облучении быст­рыми нейтронами вплоть до потоков плотностью 1018 нейтронов/см2.

Источник: http://reom.ru/stati/304/

Большая Энциклопедия Нефти и Газа

Cтраница 1

Резисторы фильтра R1 и R2 часто устанавливаются в оба провода сигнальной линии для симметрирования, в ряде схем можно использовать только одно сопротивление.

Выбор величин R ] и R2 определяется только необходимостью защиты датчика от сигнала переменного тока источника напряжения возбуждения либо исключения влияния емкости кабеля, связывающего датчик и модулятор и шунтирующего его своей емкостью.  [1]

Сопротивлениерезистора фильтра ф желательно во всех случаях выбрать наибольшим, поскольку это ведет к повышению устойчивости.  [2]

Если перегорелрезистор фильтра, то на нем будут видны почерневшие ободки. При неисправности конденсатора фильтра 5С4 его следует отпаять и в случае появления растра заменить конденсатор.  [3]

Схемы активно-емкостных.  [4]

Значение сопротивлениярезистора фильтра – Ri определяется исходя из оптимальной величины его коэффициента полезного действия.  [5]

Поскольку сопротивлениерезистора фильтра R нельзя увеличивать более 220 Ом ( так как это уменьшит напряжение питания остальных каскадов), то лля получения хорошей развязки номинальная емкость конденсаторов Фильтра С.  [6]

Неисправности в нем возникают из-за потери эмиссии высоковольтным кенотроном, перегораниярезистора фильтра или пробоя конденсатора фильтра. В последнем случае в кенотроне появляется фиолетовое свечение. Если нить кенотрона не накаливается, то сначала заменяют кенотрон.  [7]

Если питание транзисторного каскада осуществляется через индивидуальный развязывающий ЛС-фильтр, включенный между отрицательным полюсом источника питания и резистором или катушкой индуктивности в цепи коллектора ( транзистор структуры р-п – р, заземлен положительный полюс источника питания), то при расчете коэффициента нестабильности следует пользоваться формулами ( 1 – 26) для схем Ж к И в табл. 5, принимая величину RK за сопротивлениерезистора упомянутого фильтра. Когда же, как показано на схеме Ж, включен резистор междукаскадной связи, то в формулу ( 1 – 26) следует подставлять значение RK, равное сумме сопротивлений резисторов связи и фильтра. И), то при расчете его сопротивление во внимание не принимают.  [8]

Если емкость конденсатора Сф в развязывающем фильтре выбрана достаточно большой, так что CфRa CCRC, то прямое влияние этого фильтра ( без учета влияния по цепи обратной связи) на частотную характеристику и воспроизведение плоской вершины импульса мало и его можно не учитывать. Сопротивлениерезистора фильтра Rф желательно выбирать наибольшим, так как это повышает устойчивость.  [9]

Сборка сердечника дросселя низкой частоты.  [10]

Сопротивлениерезистора фильтра, кроме того, должно быть таким, чтобы напряжение выпрямленного тока не падало на нем более чем на 10 – 20 в, иначе усиление и выходная мощность приемника или усилителя, питающегося от выпрямителя, снизятся.  [11]

Определив из выражения ( 88) величину Y 197, находим, что Д0С0 1 57 сек. На схеме ( рис. 47)резисторы фильтра R19 – R23 взяты по 620 ком, а емкости С10 – С14 – по 0 1 мкф.  [12]

Увеличение тока нагрузки вызывает также уменьшение напряжения на выходе выпрямителя, так как растет падение напряжения на его внутреннем сопротивлении, включающем сопротивления вторичной обмотки трансформатора, вентиля и дросселя илирезистора фильтра.  [13]

Важно

На рис. 9 – 2 показана резонансная токоограничивающая установка на 6 6 кВ с номинальной мощностью 10 MB-А, смонтированная в Великобритании. На переднем плане видны линейные реакторы традиционного исполнения с воздушными сердечниками. В небольших бачках размещены дроссели ирезисторы фильтра гармоник.

В более крупных резервуарах находятся главный и дополнительный насыщающиеся реакторы и токоограни-чивающие резисторы байпасной цепи. Для всех этих компонентов оборудования предусмотрено естественное масляное охлаждение.

Батарея конденсаторов, смонтированная над резисторами байпасной цепи, выполнена по принципу построения конденсаторов связи на установках продольной компенсации в ЛЭП высокого напряжения. Аналогичным образом была спроектирована и система их защиты. Особое внимание при разработке конденсаторной батареи было уделено гармоническому составу тока.

В первом приближении можно считать, что требующееся для размещения резонансной установки место определяется из расчета 9 мг на каждый мегавольт-ампер ее пропускной способности в номинальном режиме.  [14]

Эти схемы обеспечивают более высокую стабильность работы. Обычно комбинированная обратная связь вводится лишь для постоянного тока.

Для исключения обратной связи по переменному току резистор Ra ( элемент отрицательной обратной связи по току) шунтируется конденсатором Са, арезистор фильтра Вф ( элемент схемы, с которого снимается сигнал обратной связи по напряжению) шунтируется блокировочным конденсатором Сф.  [15]

Страницы:      1    2

Источник: http://www.ngpedia.ru/id393903p1.html

RC-фильтры

Фильтры — это схемы, которые пропускают без затухания (ослабления) определенную полосу частот и подавляют все остальные частоты. Частота, на которой начинается подавление, называется частотой среза fс (рис.28.1).

Рис. 28.1. Частотная характеристика фильтра нижних (а) и верхних (б) частот.

Влияние фильтра на прямоугольный сигнал

Как уже говорилось в гл. 3, прямоугольный сигнал представляет собой сложное колебание, состоящее из основной гармоники и бесконечного ко­личества нечетных гармоник. Низкочастотные составляющие формируют основание и плоскую вершину импульса, а высокочастотные — его фронт и срез.

Когда прямоугольный сигнал проходит через фильтр, его форма иска­жается. Фильтр нижних частот (ФНЧ) будет искажать главным образом Фронты и срезы, делая их менее крутыми и скругляя углы, как показано на рис. 28.7(б).

ФНЧ оказывает на прямоугольный сигнал такое же Действие, как усилители с недостаточной шириной полосы пропускания. Фильтр верхних частот (ФВЧ), наоборот, искажает плоскую вершину и снование прямоугольного сигнала (рис. 28.

5(б)).

RC фильтры

Простейшим среди фильтров является RC-фильтр. Принцип его работы основан на том, что при изменении частоты реактивное сопротивление конденсатора изменяется обратно пропорционально частоте, а сопроти­вление резистора остается неизменным. На схеме рис. 28.2 конденсатор соединен последовательно с резистором.

Совет

При подаче на вход такого фильтра низкочастотного сигнала реактивное сопротивление конденсатора С будет гораздо больше, чем сопротивление резистора R. В результате паде­ние напряжения Vc на конденсаторе будет большим, а на резисторе Vrмалым.

При подаче на вход этого фильтра высокочастотного сигнала картина будет обратная: Vc будет малым, аVr большим. Если теперь представить эту схему, как на рис. 28.3(б), где падение напряжения на конденсаторе является выходным, то в выходном сигнале будут преоб­ладать НЧ-составляющие, а высокочастотные будут сильно ослаблять­ся.

Другими словами, мы получили фильтр нижних частот. И наоборот, если выходное напряжение снимать с резистора (рис. 28.3(а)), то получим фильтр верхних частот. Значения R и С определяют частоту среза фильтра.

Дифференциатор

Дифференциатор — это фильтр верхних частот. Если на вход диф­ференциатора подать последовательность прямоугольных импульсов, то на выходе будут получаться высокочастотные всплески, или «пички». На рис. 28.4 изображен RC-дифференциатор. Конденсатор С беспре­пятственно пропускает ВЧ-составляющие входного сигнала, образующие фронт импульса АВ, а затем начинает заряжаться до 10 В.

Если постоянная времени (произведение RC) мала в сравнении с пе­риодом входных импульсов, конденсатор успеет полностью зарядиться до 10 В, прежде чем придет следующая ВЧ-составляющая импульса — срез CD (рис. 28.5(а)).

Когда конденсатор полностью зарядится, ток пре­кращается и падение напряжения на резисторе, т. е. на выходе, равно нулю. Срез CD представляет собой перепад напряжения 10 В и состоит из                 ВЧ-компонент.

Поэтому он свободно пройдет через конденсатор и напряжение на выходе скачком упадет до –10 В. После этого конденсатор начнет перезаряжаться до –10 В, и, если постоянная времени мала, он успеет полностью зарядиться до этого напряжения.

При этом выходное напряжение спадет до нуля и будет оставаться таким до прихода следую­щего фронта и т. д. Если постоянная времени больше, чем период входных импульсов, то выходной сигнал будет иметь форму, как на рис. 28.5(б).

Рис. 28.4. RC-дифференциатор.

Рис. 28.5. Сигнал на выходе дифференциатора,

изображенного на рис. 28.4, при малой (а) и большой (б) по­стоянной времени.

Интегрирующая RC-цепъ

Обратите внимание

Интегрирующая RC-цепь (интегратор) является фильтром нижних час­тот (ФНЧ) и при подаче на его вход прямоугольного сигнала выдает на вы­ходе сигнал треугольной (пилообразной) формы. На рис. 28.6 изображен RC-интегратор. При подаче на его вход фронта прямоугольного импуль­са (рис. 28.

7) конденсатор начинает заряжаться до напряжения +10 В. Еслизадать постоянную времени RC, большую в сравнении с периодом входного сигнала, то срез CD импульса поступит прежде, чем конденсатор успеет полностью зарядиться (рис. 28.7(а)).

После этого конденсатор начинает заряжаться в обратном направлении. И опять в связи с большой постоянной времени фронт FE следующего импульса придет прежде, чем конденсатор успеет полностью зарядиться в отрицательном направлении и т.д.

В результате на выходе получается сигнал треугольной формы, амплитуда которого меньше, чем амплитуда входного сигнала.

Если постоянная времени мала в сравнении с периодом входного сиг­нала, то выходной сигнал будет иметь вид, как на рис. 28.7(б).

Обратите внимание, что и в интеграторе, и в дифференциаторе постоянная времени всегда сравнивается с периодом входного сигнала.

Например, постоян­ная времени 100 мкс является большой по сравнению с периодом, ска­жем, 5 мкс (частота входного сигнала 200 кГц), но малой в сравнении с периодом 5 мс (частота входного сигнала 200 Гц).

Влияние RC-цети на синусоидальный сигнал

Синусоидальный сигнал является простым гармоническим колебанием и не содержит высших гармоник, поэтому при подаче такого сигнала на фильтр любого типа его форма не изменяется.

Важно

Амплитуда выходного синусоидального сигнала может уменьшиться в зависимости от того, на­ходится его частота в пределах полосы пропускания или нет.

В первом случае синусоидальный сигнал претерпевает очень малое затухание, во втором случае затухание может быть очень большим.

Воздействие RC-цепи на пилообразный сигнал

Интегратор скругляет острые кромки пилообразного сигнала (рис. 28.8). Степень скругления определяется постоянной времени схемы. При очень большой постоянной времени выходной сигнал будет иметь вид, как на рис.28.8(б).

Рис. 28.8. Влияние интегрирующей цепочки

на форму пилообразного на­пряжения.

Рис. 28.9. Влияние дифференциру­ющей цепочки

на форму пилообраз­ного напряжения.

На рис. 28.9 показано воздействие дифференциатора на сигнал пило­образной формы. При очень малой постоянной времени выходной сигнал получается в виде импульсов (пичков) (рис. 28.9(б)).

В этом видео рассказывается о полосовых фильтрах:

Источник: http://radiolubitel.net/index.php/elektronika/300-rc-filtry

Резисторы | сопротивление | влияние на звук

Резистор – пассивный элемент электрической схемы, имеющий сопротивление в цепи и ограничивающий протекающий ток, где создаётся падение напряжения, которое задаёт режим работы активным элементам.

В наших усилителях мощности, для каждого активного элемента и его управления, индивидуально подаётся необходимое рабочее напряжение, следовательно согласно закону Ома, автоматически устанавливается индивидуальный рабочий ток и отпадает необходимость применять резисторы (сопротивление).

К тому же, идеальный резистор при температуре выше абсолютного нуля является источником электронного шума. Это следует из фундаментальной теоремы Котельникова – Найквиста. Однако в реальной – электронной природе идеальных резисторов не существует, что только усугубляет положение.

В шуме реальных резисторов также всегда присутствует составляющая компонента, интенсивность которой пропорциональна обратной частоте, то есть 1 / f шум или «розовый шум». Этот электронный шум возникает из – за перезарядки ионов примесей в резисторах, на которых локализованы электроны.

Резисторы ограничивают динамические способности усилителя мощности и увеличивают общую компрессию звука.

Сопротивление – в литературе и физике подразумевается как противодействие. Бегун не побежит быстрее, если к ногам прицепить гири. Однако в High End Audio многие пытаются доказать обратное, так как не могут и не умеют изготовить усилитель без резисторов.

Негативное влияние сопротивления превосходит негативное воздействие конденсаторов, так как резисторы всегда присутствуют в большом количестве и на самых важных участках схемы. В современном High End Audio производстве мало уделяют внимание этой проблеме, в виду того, что проще и дешевле применить резистор, чем его не применять.

Отсутствие резисторов в схеме усилителя подчёркивает, что достигнуто идеальное схемотехническое решение с максимально возможными техническими характеристиками (без ограничений, без инертности), а также правильно подобраны все компоненты и точно выставлены их режимы работы – “Воюй не числом, а умением.

Резисторы аудиофильные применяются только в сервисных цепях и во вспомогательных каскадах. VISHAY (USA), KIWAME (Japan).

Принцип построения усилителя без сопротивления

Усилитель без резисторов – есть без ООС и работает в режиме класса “А”. Если в схеме усилителя (один канал) установлено более пяти резисторов, то высокого качества звука достигнуть практически невозможно.

Все режимы работы транзисторов выставляем без применения сопротивления, регулируя напряжение питания для каждого активного элемента в отдельности. При этом, напряжение смещения задаётся индивидуальным блоком питания, так сделано в повторителе мощности “Grimmi”.

Возбуждение транзисторов убирается их кропотливым подбором на специальном стенде. Спаренные транзисторы питаются от общего источника питания, но управляющее напряжение подаётся от отдельного.

Генераторы стабильного тока и их управление построены на звукопроводящих транзисторах, которые расположены на общем радиаторе, что термо-стабилизирует подачу тока. Резисторы – заменяются на однотипные транзисторы (в диодном включении), что исключает дополнительные призвуки.

Транзисторы – можно и нужно устанавливать вместо стабилитронов (лавинный режим), так как их шумовые характеристики на много ниже, чем у стабилитронов.

В ламповых каскадах (вместо резисторов) надо применять вакуумные триоды или малошумящие транзисторы в диодном включении.
Это есть основная методика построения усилителя без резисторов.

Гасящий конденсатор вместо гасящего резистора

Совет

Лучшее сочетание вакуумных и          полупроводниковых характеристик – однотактный гибридный усилитель звука.

          Мы не создаём иллюзий,
          Мы делаем звук живым!

Источник: http://grimmi.ru/resistors.html

Резистор

Резистор — это самый распространенный электронный компонент, название которого произошло от английского слова «resistor» и от латинского «resisto» — сопротивляюсь.

Основным параметром резистора считается сопротивление, которое характеризуется его способностью в препятствии протекания электрического тока.

Единицами сопротивления у резисторов являются – Омы (Ω), Килоомы (1000 Ом или 1КΩ) и Мегаомы (1000000 Ом или 1МΩ).

Практически ни одна схема не обходиться без резисторов. С помощью подбора соответствующих величин резисторов и их соединений, происходит нужное распределение электрического тока в цепи.

Характеристики резистора

Кроме предельного сопротивления, резисторы обладают рядом других физиотехнических показателей, которые имеют большое значение в его применении.

Среди основных параметров выделяются такие характеристики резистора, как сопротивление по номинальному значению и его возможное отклонение, рассеиваемая мощность, предельное рабочее напряжение, максимальная температура, температурный коэффициент сопротивления, частотный отклик и шумы. Рассмотрим некоторые из них.

Температурный коэффициент сопротивления ТКС

Температурный коэффициент сопротивления (ТКС) определяет относительное изменение величины сопротивления резистора при изменении температуры окружающей среды на 1 ° по Цельсию. ТКС может быть как положительным, так и отрицательным.

Если резистивная пленка имеет относительно большую толщину, то она обладает свойствами объемного тела, сопротивляемость которого с увеличением температуры становится больше.

Если же резистивная пленка имеет относительно небольшую толщину, то она состоит как бы из небольших «островков», расположенных отдельно друг от друга, и сопротивление такой пленочной структуры с увеличением температурных значений становится меньше, так как взаимодействие между отдельными «островками» улучшается. Для непроволочных резисторов, применяемых в радиоэлектронике и телевизионной промышленности, температурный коэффициент сопротивления не больше ±0,04 — 0,2 %, у проволочных деталей -±0,003 — 0,2 %.

Рассеиваемая мощность резистора

Номинальная мощность рассеивания, или рассеиваемая мощность резистора показывает предельно значимую мощность, которую сопротивление может рассеивать при долговременной электрической нагрузке, атмосферном давлении и температуре в нормальных значениях.

Непроволочные резисторы подоазделяются на мощность по номиналу от 0,05 до 10 Вт, а сопротивления проволочного типа от 0,2 до150 Вт. На электpосхемах рассеиваемая мощность резистора выделяется условно пунктиром на обозначении сопротивления для мощностей меньше 1 Вт и pимскими цифрами на обозначении сопротивления для мощности больше 1 Вт.

Номинальная мощность рассеивания этих деталей должна быть на 20—30 % больше такого показателя, как рабочая рассеиваемая мощность резистора

Максимальное напряжение резистора

Предельное или максимальное напряжение резистора — это предельно возможное напряжение, подведенное к выводам сопротивления, которое не допускает превышения показателей техусловий (ТУ) на параметры электричества. По- другому, максимальное напряжение резистора – предельно допустимая величина, которая может быть приложена к резистору.

Этот показатель выводится для обычных пределов работы детали и напрямую зависит от линейных размеров резистора, шага спиральной нарезки, температурных показателей, давления эксплуатационной среды и давления атмосферы.

Чем выше температурные показатели и меньше давление атмосферы, тем больше шансов для пробоя теплового или электрического типа и выхода резистора из строя.

Максимальная температура резистора

Одной из характеристик резистора является такой показатель, как максимальная температура резистора, напрямую зависит от мощности детали.

Получается, что при увеличении мощности, которая выделяется в сопротивлении, увеличивается температура резистора, что может привести к его поломке. Во избежание этого, необходимо уменьшить температуру резистора. Это можно достичь укрупнением габаритов сопротивления..

Для всех типов сопротивлений определена максимальная температура резистора, превышение которой чревато выходом детали из строя.

Температурный показатель сопротивления находится в прямой зависимости и от температуры окружающего воздуха. Если этот показатель достигает большого значения, то температурный показатель сопротивления может стать выше максимальной температуры резистора, что крайне нежелательно. Чтобы этого не случилось, нужно снизить мощность, которая выделяется в резисторе.

Частотный отклик резистора

Значение такой характеристики, как частотный отклик резистора, связано с определением значения максимального сопротивления и минимальной ёмкости. При прохождении тока высокой частоты сопротивление стремится к проявлению реактивных свойств в зависимости от конструктивного исполнения – доминируют либо емкостные, либо индуктивные значения.

Если в одно и то же время дискретно уменьшать и значение сопротивления и значение емкости, то можно вызвать быстрый демпфированный частотный отклик резистора, который позволит определить как максимальное сопротивление, так и минимальную емкость.

Обратите внимание

При этих значениях не возникает колебаний и в то же время достигается мгновенная стабилизация выходного напряжения. Но в теории это рассматривается , как частный случай.

На высоких частотах резистор начинает проявлять реактивные свойства в зависимости от конструктивного исполнения — либо преимущественно емкостные, либо индуктивные.

Основные типы резисторов

По физическому устройству резисторы бывают следующих типов:

  • углеродные пленочные
  • углеродные композиционные
  • металлооксидные
  • пленочные металлические
  • проволочные

Углеродные пленочные выпускают в виде керамического стержня, который покрыт специальной пленкой кристаллического углерода. Она в свою очередь и является резистивным элементом. Их номинальный диапазон сопротивления от двух до одного МОм, а максимальная мощность от 0,2 до 2 Вт.

Углеродные композиционные являются самыми дешевыми. Поэтому их стабильность не высока и их сопротивление, как правило, может меняться на пару процентов.

Также при протекании тока, через такие резисторы могут возникать шумы.

Такое обстоятельство имеет важное значение, особенно в медицинской электронной аппаратуре, так как там часто требуется большое усилие, но с малым уровнем шума

Металлооксидные являются вторым типом пленочных резисторов. В этих резисторах окончательное сопротивление получается за счет нанесения спиральной канавки на керамической основе. За счет этого увеличивается эффективная длина между концами резистора, а также сопротивление.

Пленочные металлические используются в транзисторных выходных, так как они имеют сопротивление меньшее, чем 10 Ом, что для этого и необходимо. Эти резисторы рассеивают большую мощность при малых размерах. Это и является самым большим их достоинством.

Также он имеет стабильность нагрузки, которая достигает не более ±3%, малый коэффициент сопротивления под напряжением, а также очень малый уровень шумов. Еще у него температурный коэффициент достигает от 0 до 600-10~6 1/°С.

Проволочные резисторы делаются из безиндуктивной или обычной обмотки. Они применяются тогда, когда нужна большая рассеиваемая мощность или высокая стабильность, так как другие резисторы не могут этого обеспечить.

Они рассеивают мощность до 100 Вт, но их сопротивление ограничено до 50 кОм.

Температура их поверхности при работе может достигать очень больших размеров, поэтому их нужно располагать так, чтобы могла обеспечиваться вентиляция воздуха и их охлаждение, потому что в противном случае они выйдут из строя.

Источник: http://hightolow.ru/resistor1.php

7. Анализ цепей с неисправными компонентами

Анализ цепей с неисправными компонентами

Работа радиомастера часто связана с поиском и устранением неполадок в неисправных цепях.

Анализ неисправных цепей требует от радиолюбителя глубокого понимания фундаментальных основ электроники, умения формулировать гипотезы, способность оценивать значимость различных гипотез (почему одна причина может быть вероятнее другой), а так же творческий подход в применении решений для устранения проблемы. Несмотря на то, что все эти навыки можно свести в научную методологию, многие мастера по ремонту радиоаппаратуры согласятся, что устранение неполадок – это искусство, для овладения которым могут понадобится годы. 

Любому радиолюбителю очень важно интуитивное понимание того, как неисправные компоненты влияют на различные конфигурации цепей. В данной статье мы исследуем только некоторые эффекты воздействия неисправных компонентов на последовательные и параллельные цепи, более подробно эта тема будет раскрыта позднее, в статьях про последовательно-параллельные цепи.

Давайте начнем с простой последовательной цепи:

Если все компоненты функционируют должным образом, то мы математически можем определить все токи и напряжения этой схемы:

Теперь предположим, что резистор R2 у нас короткозамкнут. Короткое замыкание означает что резистор сейчас действует как обычный провод, который практически не имеет сопротивления.

Схема в этом случае будет вести себя так,  как будто параллельно резистору подключена “перемычка” (“Перемычка” – это общий термин для временно подключенного провода в цепи).

Важно

Причина короткого замыкания в этом примере для нас не имеет значения, нам важно только его влияние на схему:

При закороченном резисторе R2 общее сопротивление цепи уменьшится. Так как напряжение, производимое батареей, является величиной постоянной, снижение общего сопротивления вызовет увеличение общей силы тока.

Поскольку сила тока в цепи увеличилась с 20 до 60 миллиампер, увеличится и напряжение на резисторах R1 и R3 (которые не изменили своего сопротивления). Резистор R2, закороченный перемычкой, фактически устраняется из цепи, так как его сопротивление равно нулю. Напряжение на этом резисторе так же будет иметь нулевое значение.

Если резистор R2 будет не замкнут а “оборван”, то его сопротивление увеличится до бесконечности:

При бесконечном сопротивлении резистора R2 общее сопротивление последовательной цепи так же будет бесконечно (для последовательной цепи Rобщ = R1 + R2 + …. Rn).

Общая сила тока в этом случае будет иметь нулевое значение, что означает отсутствие в цепи потока электронов, способного произвести напряжение на резисторах R1 и R3.

 Полное напряжение батареи проявится на выводах оборванного резистора R2.

Аналогичный метод анализа можно применить и к параллельной цепи. Для начала мы проанализируем “исправную” параллельную цепь:

Если предположить, что резистор R2 в этой цепи “оборван”, то последствия будут следующими:

Совет

Заметьте, что “оборванная” ветвь нашей параллельной цепи влияет только на ток этой ветки и на общий ток  схемы.

В связи с тем, что напряжение в параллельной цепи одинаково на всех ее компонентах, вышедший из строя резистор R2 ни как не повлияет на напряжения резисторов R1 и R3 – оно останется прежним – 9 вольт.

Отсюда следует, что при неизменных значениях напряжения и сопротивления резисторов R1 и R3 величина проходящего через них тока также не изменится.

Такая ситуация аналогична домашней системе освещения, в которой все лампочки получают рабочее напряжение от силовых проводов, смонтированных параллельным способом.

Включение и выключение лампочки в одной комнате этой системы (включается и выключается одна ветвь параллельной цепи) не влияет на работу ламп в других комнатах.

Данное действие затрагивает только  ток этой лампы, и общий ток системы освещения:

Теперь давайте рассмотрим короткое замыкание одного из резисторов в простой параллельной цепи. В идеальном случае (с идеальным источником напряжения и нулевым сопротивление соединительных проводов), короткозамкнутый резистор в одной из ветвей этой цепи не повлияет на другие ее ветви. Но это в идеале, в реальности же эффект будет не совсем таким, а почему, мы увидим в следующих примерах:

Короткозамкнутый резистор (сопротивление которого равно 0 Ом) теоретически потребляет бесконечный ток от любого источника напряжения (I = U/0).

В нашем случае нулевое сопротивление резистора R2 уменьшает общее сопротивление цепи до нуля, увеличивая тем самым общую силу тока до бесконечности.

Пока источник напряжения поддерживает свою величину на уровне 9 вольт, токи оставшихся двух ветвей цепи (R1 и R3) не изменятся.

Отличительной особенностью этой “идеальной” схемы является то, что при подаче  бесконечного количества электронов (тока) на короткозамкнутую нагрузку, напряжение ее источника питания остается неизменным.  В реальной жизни такое невозможно.

  Даже если короткозамкнутый резистор имеет небольшое сопротивление (не нулевое), никакой реальный источник напряжения не сможет одновременно выдержать огромные перегрузки по току и поддержать постоянную величину напряжения.

Причиной всему этому служит внутреннее сопротивление, которое является неотъемлемой частью всех без исключения источников электрической энергии:

Внутренние сопротивления источников питания превращают простые параллельные цепи в последовательно-параллельные.

Такие сопротивления как правило очень малы чтобы оказывать заметное влияние на работу схемы, но при больших токах, которые возникают вследствие замыкания компонентов, их влияние многократно увеличивается.

В нашем случае, короткое замыкание резистора R2 приведет к тому, что практически все напряжение сосредоточится на внутреннем сопротивлении источника, а резисторы R1, R2 и R3 останутся почти без напряжения:

Следует отметить, что намеренное короткое замыкание через контакты любого источника напряжения – это плохая идея. Даже если полученный в результате такого замыкания ток (высокая температура, вспышки и искры) не причинит вреда находящимся поблизости людям, источник питания, скорее всего, будет поврежден, если он не был специально разработан для обработки коротких замыканий.

В последующих статьях мы подведем вас к анализу схем с неизвестными величинами, т. е. к анализу последствий отказов компонентов схем, в которых вам неизвестны значения напряжений источников питания, сопротивлений резисторов и т.д. Данная статья служит первым шагом к такому анализу.

Обратите внимание

В то время как обычный анализ (с применением Закона Ома и принципов последовательных и параллельных цепей), базирующийся на численных величинах – является количественным анализом, анализ схем с неизвестными величинами можно назвать качественным анализом. Другими словами, мы будем анализировать качественное влияние неисправностей на цепь, а не точные величины.  В конечном итоге вы добьетесь глубокого интуитивного понимания работы электрической схемы.   

Источник: http://www.radiomexanik.spb.ru/4.-posledovatelnyie-i-parallelnyie-tsepi/7.-analiz-tsepey-s-neispravnyimi-komponentami.html

Ссылка на основную публикацию
Adblock
detector