Можно ли подключить между собой две линии 0,4 кв от разных трансформаторов?

Условия параллельной работы трансформаторов

Параллельная работа трансформатора характеризуется особенной работой обмоток. К первичным контурам подводится питающая сеть. Подключение обмотки вторичного типа производится к общей сети. Исходящее электричество питает различных потребителей.

Требования сети

Включение трансформаторов на параллельную работу вызвано определенными особенностями эксплуатации электроустановок. Представленный подход позволяет решить проблемы электроснабжения.

При параллельном подключении силовых трансформаторов удается избежать увеличения токов основного устройства. Система менее подвержена перегрузкам. В процессе параллельного подключения обмоток трансформатора уменьшается показатель сбоев в работе электросети. Вероятность, что не будут работать сразу два трансформаторных устройства, крайне мала.

При эксплуатации силового оборудования высокой мощности необходимо обеспечить достаточное пространство (в высоту) для установки агрегата. В небольшом помещении допускается параллельная работа трансформаторов, согласно ПУЭ.

Обратите внимание

На территории одной электроустановки со стандартными размерами пространства возможно использовать необходимое количество силовой аппаратуры.

Для увеличения продуктивности, безопасности работающих от разных источников агрегатов, потребуется правильно создать параллельное соединение обмоток.

Особенности

Параллельное соединение трансформаторов тока должно выполнять установленные правила и условия включения. Силовые агрегаты при включении должны характеризоваться определенным показателем полной мощности.

Эта величина соответствует сумме мощностей соединенных приборов. При этом выполняется условие. Величины сопротивлений, коэффициент трансформации в процессе включения трансформаторов на параллельную работу, равны.

Если величины мощности неодинаковы, нагрузка делится в соответствии с номиналами. Это происходит при условии равенства коэффициента трансформации подключаемых объектов.

Условия

Существуют определенные условия параллельной работы трансформаторов. Всего установлено 5 пунктов. Включенные приборы работают правильно при следующих условиях:

  1. Фазировка. Выполнение этого условия трансформаторами является обязательным. Иначе будет наблюдаться короткое замыкание. Токи вторичных цепей позволяют выполнить фазировку. Фазы соединений согласовываются со стороны низкого, высокого напряжения.
  2. Напряжение на обмотках вторичных и первичных катушек при соединении должно быть разным. Это условие выполняется с соблюдением особенностей изоляции. Коэффициент трансформации всех элементов системы должен быть идентичным. Соединить устройство допускается, если отклонение показателя не превышает 0,5 %.
  3. Напряжение короткого замыкания равно для всех агрегатов. Это способствует выполнению обмотками установленных функций. Сопротивление контура возрастает при высоком напряжении короткого замыкания. Увеличивая его уровень для маломощного агрегата, можно получить перегрузку. Для нормальных условий функционирования системы при выполнении стандартов отклонение между показателями короткого замыкания устройств не превышает 10%.
  4. Включить параллельным соединением допускается одинаковые обмотки, соответствующие друг другу. При несоблюдении этого условия работающими приборами вырабатываются уравнительные токи. Наблюдается сдвиг фазы.
  5. Мощность аппаратуры не должна отличаться в 3 раза. Это является важным условием правильной работы системы. В противном случае мощный прибор увеличивает нагрузку на следующие приборы. Маломощные агрегаты будут перегружены. Соединять подобные устройства запрещается правилами безопасности.

Следуя перечисленным условиям, обеспечивается стабильная, эффективная работа силового оборудования. Безопасность и надежность функционирования системы повышается.

Невыполнение условий

Если не соблюдается хотя бы одно из условий, следует ожидать сбоев в работе оборудования. Нужно знать, в каком случае эксплуатация коммутированной установки будет небезопасной.

При использовании разных типов соединения появляется сдвиг фаз. При этом по контурам будет бежать ток, превышающий установленные производителем параметры. Максимальное увеличение значения появляется при возникновении короткого замыкания. Сдвиг фазы при этом составляет 180º для трансформаторов с группами обмоток 12 и 6.

Следующая небезопасная ситуация возможна при неравенстве коэффициентов трансформации. Во вторичной обмотке появится результирующее напряжение. Электричество будет протекать по цепи на холостом ходу.

При несовпадении показателей короткого замыкания будут неравны внутренние сопротивления. На холостом ходу электричество не появится, но нагрузка распределится в обратной зависимости от их сопротивления. Маломощный агрегат в такой ситуации будет перегружен.

Выполнение фазировки

Чтобы избежать появления короткого замыкания, на низшем выводе напряжения проводится фазировка. Если этот показатель в указанной точке не превышает 1000 В, применяется вольтметр. Его настраивают на соответствующий уровень напряжения.

Фазируемые обмотки соединяют. Это позволит получить замкнутый контур. Обмотки могут иметь заземленную нейтраль или выпускаться без нее. В первом случае контур замыкается через землю. Сопротивление между выводами замеряется. Результат сопоставляется с указанными производителем значениями.

Если нейтраль в конструкции не предусмотрена, потребуется ставить последовательно перемычку между соответствующими выводами двух трансформаторов. Между ними замеряют напряжение. Чтобы обеспечить безопасную работу агрегатов, соединяют те выводы, между которыми при замере не было напряжения.

Рассмотрев особенности параллельного соединения трансформаторных устройств, а также условия и рекомендации по проведению этого процесса, можно обеспечить стабильную и безопасную работу системы. Это предоставляет массу преимуществ в процессе энергоснабжения потребителей электричеством.

Источник: https://ProTransformatory.ru/vidy/parallelnaya-rabota-transformatorov

Подключаем к сети неизвестный трансформатор

Николай Петрушов

Как разобраться с обмотками трансформатора, как его правильно подключить к сети и не “спалить” и как определить максимальные токи вторичных обмоток??? Такие и подобные вопросы задают себе многие начинающие радиолюбители.

В этой статье я постараюсь ответить на подобные вопросы и на примере нескольких трансформаторов (фото в начале статьи), разобраться с каждым из них..Надеюсь, эта статья будет полезной многим радиолюбителям.

Для начала запомните общие особенности для броневых трансформаторов 

– Сетевая обмотка, как правило мотается первой (ближе всех к сердечнику) и имеет наибольшее активное сопротивление (если только это не повышающий трансформатор, или трансформатор имеющий анодные обмотки).

– Сетевая обмотка может иметь отводы, или состоять например из двух частей с отводами.

– Последовательное соединение обмоток (частей обмоток) у броневых трансформаторов производится как обычно, начало с концом или выводы 2 и 3 (если например имеются две обмотки с выводами 1-2 и 3-4).

– Параллельное соединение обмоток (только для обмоток с одинаковым количеством витков), производится как обычно начало с началом одной обмотки, и конец с концом другой обмотки (н-н и к-к, или выводы 1-3 и 2-4 – если например имеются одинаковые обмотки с выводами 1-2 и 3-4).

Общие правила соединения вторичных обмоток для всех типов трансформаторов

Начнём с маленького трансформатора, придерживаясь вышеописанных особенностей (левый на фото). Внимательно его осматриваем. Все выводы у него пронумерованы и провода подходят к следующим выводам; 1, 2, 4, 6, 8, 9, 10, 12, 13, 22, 23, и 27.

Дальше необходимо прозвонить омметром все выводы между собой, чтобы определить количество обмоток и нарисовать схему трансформатора. Получается следующая картина. Выводы 1 и 2 – сопротивление между ними 2,3 Ома, 2 и 4 – между ними 2,4 Ома, между 1 и 4 – 4,7 Ома (одна обмотка со средним выводом).

Дальше 8 и 10 – сопротивление 100,5 Ома (ещё одна обмотка). Выводы 12 и 13 – 26 Ом (ещё обмотка). Выводы 22 и 23 – 1,5 Ома (последняя обмотка). Выводы 6, 9 и 27 не прозваниваются с другими выводами и между собой – это скорее всего экранные обмотки между сетевой и другими обмотками.

Эти выводы в готовой конструкции соединяются между собой и присоединяются к корпусу (общий провод). Ещё раз внимательно осматриваем трансформатор.

Сетевая обмотка, как мы знаем, мотается первой, хотя бывают и исключения.

На фото плохо видно, поэтому продублирую. К выводу 8 подпаян провод, выходящий от самого сердечника (то есть он к сердечнику ближе всех), потом идёт провод к выводу 10 – то есть обмотка 8-10 намотана первой (и имеет самое высокое активное сопротивление) и скорее всего является сетевой.
Теперь по полученным данным от прозвонки, можно нарисовать и схему трансформатора.

Остаётся попробовать подключить предполагаемую первичную обмотку трансформатора к сети 220 вольт и проверить ток холостого хода трансформатора.
Для этого собираем следующую цепь.

Последовательно с предполагаемой первичной обмоткой трансформатора (у нас это выводы 8-10), соединяем обычную лампу накаливания мощностью 40-65 ватт (для более мощных трансформаторов 75-100 ватт).

Лампа в этом случае сыграет роль своеобразного предохранителя (ограничителя тока), и защитит обмотку трансформатора от выхода её из строя при подключении к сети 220 вольт, если мы выбрали не ту обмотку или обмотка не рассчитана на напряжение 220 вольт.

Важно

Максимальный ток, протекающий в этом случае по обмотке (при мощности лампы 40 ватт), не превысит 180 миллиампер. Это убережёт Вас и испытываемый трансформатор от возможных неприятностей.

-И вообще, возьмите себе за правило, если Вы не уверены в правильности выбора сетевой обмотки, её коммутации, в установленных перемычках обмотки, то первое подключение к сети всегда производить с последовательно включённой лампой накаливания.

Соблюдая осторожность, подключаем собранную цепь к сети 220 вольт (у меня напряжение сети чуть больше, а точнее – 230 вольт). Что видим? Лампа накаливания не горит. Значит сетевая обмотка выбрана правильно и дальнейшее подключение трансформатора можно производить без лампы.

Подключаем трансформатор без лампы и измеряем ток холостого хода трансформатора.

Ток холостого хода (ХХ) трансформатора измеряется так; собирается аналогичная цепь, что мы собирали с лампой (рисовать уже не буду), только вместо лампы включается амперметр, который предназначен для измерения переменного тока (внимательно осмотрите свой прибор на наличие такого режима).

Амперметр сначала устанавливается на максимальный предел измерения, потом, если его много, амперметр можно перевести на более низкий предел измерения. Соблюдая осторожность – подключаем к сети 220 вольт, лучше через разделительный трансформатор.

Если трансформатор мощный, то щупы амперметра на момент включения трансформатора в сеть лучше закоротить или дополнительным выключателем, или просто закоротить между собой, так как пусковой ток первичной обмотки трансформатора превышает ток холостого хода в 100-150 раз и амперметр может выйти из строя.

После того, как трансформатор включён в сеть – щупы амперметра разъединяются и измеряется ток.

Ток холостого хода трансформатора должен быть в идеале 3-8% от номинального тока трансформатора. Вполне считается нормальным и ток ХХ 5-10% от номинального.

То есть если трансформатор с расчётной номинальной мощностью 100 ватт, ток потребления его первичной обмоткой будет 0,45 А, значит ток ХХ должен быть в идеале 22,5 мА (5% от номинала) и желательно, чтобы он не превышал 45 мА (10% от номинала).

Совет

Как видим, ток холостого хода чуть более 28 миллиампер, что вполне допустимо (ну может чуток завышен), так как на вид этот трансформатор мощностью 40-50 ватт. Измеряем напряжения холостого хода вторичных обмоток.

Получается на выводах 1-2-4 17,4 + 17,4 вольта, выводы 12-13 = 27,4 вольта, выводы 22-23 = 6,8 вольта (это при напряжении сети 230 вольт). Дальше нам нужно определить возможности обмоток и их нагрузочные токи.

Как это делается?

Если есть возможность и позволяет длина подходящих к контактам проводов обмоток, то лучше измерить диаметры проводов (грубо до 0,1 мм – штангенциркулем и точно микрометром), и по таблице ЗДЕСЬ , при средней плотности тока 3-4 А/мм.кв. – находим токи, которые способны выдать обмотки.

Если измерить диаметры проводов не представляется возможным, то поступаем следующим образом.

Нагружаем по очереди каждую из обмоток активной нагрузкой, в качестве которой может быть что угодно, например лампы накаливания различной мощности и напряжения (лампа накаливания мощностью 40 ватт на напряжение 220 вольт имеет активное сопротивление 90-100 Ом в холодном состоянии, лампа мощностью 150 ватт – 30 Ом), проволочные сопротивления (резисторы), нихромовые спирали от электро плиток, реостаты и т.д. Нагружаем до тех пор, пока напряжение на обмотке не уменьшится на 10% относительно напряжения холостого хода.

Потом измеряем ток нагрузки.

Этот ток и будет являться максимальным током, который обмотка способна будет выдавать длительное время не перегреваясь.

Я беру в расчёт статическую нагрузку, и у меня получилось; обмотка 1-2-4 ток нагрузки (при снижении напряжения обмотки на 10% относительно напряжения холостого хода) – 0,85 ампер (мощность около 27 ватт), обмотка 12-13 (на фото выше) ток нагрузки 0,19-0,2 ампера (5 ватт) и обмотка 22-23 – 0,5 ампер (3,25 ватт). Номинальная мощность трансформатора получается около 36 ватт (округляем до 40).

Да, ещё хочу рассказать о сопротивлении первичной обмотки. Для маломощных трансформаторов оно может составлять десятки, или даже сотни Ом, а для мощных – единицы Ом. Очень часто на форуме задают такие вопросы; “Измерил мультиметром сопротивление первичной обмотки ТС250, а оно оказалось 5 Ом.

Не мало ли оно для сети 220 вольт, я боюсь его включать в сеть.

Обратите внимание

Подскажите – нормально ли оно?” Так как все мультиметры измеряют сопротивление постоянному току (активное сопротивление), то волноваться не стоит, потому что для переменного тока частотой 50 герц эта обмотка будет иметь совсем другое сопротивление (индуктивное), которое будет зависеть от индуктивности обмотки и частоты переменного тока. Если у Вас есть, чем измерить индуктивность, то Вы сами можете рассчитать сопротивление обмотки переменному току (индуктивное сопротивление). Например;

Индуктивность первичной обмотки при измерении составила 6 Гн,, идём

сюда и вводим эти данные (индуктивность 6 Гн, частота тока сети 50 Гц), смотрим – получилось 1884,959 (округляем 1885), это и будет индуктивное сопротивление этой обмотки для частоты 50 Гц. Отсюда Вы можете вычислить и ток холостого хода этой обмотки для напряжения 220 вольт – 220/1885=0.

116 А (116 миллиампер), да, сюда ещё можно добавить и активное сопротивление 5 Ом, то есть будет 1890.
Естественно, что для частоты 400 Гц будет совсем другое сопротивление этой обмотки.

Читайте также:  Можно ли менять проводку в квартире поэтапно (частями)?

Аналогично проверяются и другие трансформаторы. На фото второго трансформатора видно, что выводы подпаяны к контактным лепесткам 1, 3, 4, 6, 7, 8, 10, 11, 12.

После прозвонки становится ясно, что у трансформатора 4 обмотки.

Первая на выводах 1 и 6 (24Ома), вторая 3-4 (83 Ома), третья 7-8 (11,5 Ом), четвёртая 10-11-12 с отводом от середины (0,1+0,1 Ом).

Причём хорошо видно, что обмотка 1 и 6 намотана первой (белые выводы), потом идёт обмотка 3-4 (чёрные выводы). 24 Ома активного сопротивления первичной обмотки вполне достаточно. У более мощных трансформаторов активное сопротивление обмотки доходит до единиц Ом. Вторая обмотка 3-4 (83 Ома), возможно повышающая.

Здесь можно замерить диаметры проводов всех обмоток, кроме обмотки 3-4, выводы которой выполнены чёрным, многожильным, монтажным проводом.

Дальше подключаем трансформатор через лампу накаливания. Лампа не горит, трансформатор на вид мощностью 100-120, замеряем ток холостого хода, получается 53 миллиампера, что вполне допустимо.

Замеряем напряжения холостого хода обмоток. Получается 3-4 – 233 вольта, 7-8 – 79,5 вольта, и обмотка 10-11-12 по 3,4 вольта (6,8 со средним выводом).

Обмотку 3-4 нагружаем до падения напряжения на 10% от напряжения холостого хода, и измеряем протекающий ток через нагрузку.

Максимальный ток нагрузки этой обмотки, как видно из фотографии – 0,24 ампера. Токи других обмоток определяются из таблицы плотности тока, исходя из диаметра провода обмоток.

Обмотка 7-8 намотана проводом 0,4 и накальная проводом 1,08-1,1. Соответственно токи получаются 0,4-0,5 и 3,5-4,0 ампера. Номинальная мощность трансформатора получается около 100 ватт.

Важно

Остался ещё один трансформатор. У него контактная планка с 14-ю контактами, верх 1, 3, 5, 7, 9, 11, 13 и низ соответственно чётные. Он мог переключаться на различные напряжения сети (127,220.

237) вполне возможно, что первичная обмотка имеет несколько отводов, или состоит из двух полу-обмоток с отводами.

Прозваниваем, и получается такая картина: Выводы 1-2 = 2,5 Ом; 2-3 = 15,5 Ом (это одна обмотка с отводом); 4-5 = 16,4 Ом; 5-6 = 2,7 Ом (ещё одна обмотка с отводом); 7-8 = 1,4 Ома (3-я обмотка); 9-10 = 1,5 Ом (4-я обмотка);11-12 = 5 Ом (5-я обмотка) и 13-14 (6-я обмотка).

Подключаем к выводам 1 и 3 сеть с последовательно включённой лампой накаливания.

Лампа горит в половину накала. Измеряем напряжение на выводах трансформатора, оно равняется 131 вольт.

Значит не угадали и первичная обмотка здесь состоит из двух частей, и подключенная часть при напряжении 131 вольт начинает входить в насыщение (повышается ток холостого хода) и по этому нить лампы раскалилась.

Соединяем перемычкой выводы 3 и 4, то есть последовательно две обмотки и подключаем сеть (с лампой) к выводам 1 и 6.

Ура, лампа не горит. Измеряем ток холостого хода.

Ток холостого хода равен 34,5 миллиампер.

Здесь скорее всего (так, как часть обмотки 2-3, и часть второй обмотки 4-5 имеют большее сопротивление, то эти части рассчитаны на 110 вольт, а части обмоток 1-2 и 5-6 по 17 вольт, то есть общее для одной части 1278 вольт) 220 вольт подключалось к выводам 2 и 5 с перемычкой на выводах 3 и 4 или наоборот. Но можно оставить и так, как мы подключили, то есть все части обмоток последовательно. Для трансформатора это только лучше.
Всё, сеть нашли, дальнейшие действия аналогичны описанным выше.

Ещё немного о стержневых трансформаторах. Например имеется такой (фото выше). Какие для них общие особенности?

– У стержневых трансформаторов, как правило две симметричные катушки, и сетевая обмотка разделена на  две катушки, то есть на одной катушке намотано витков на 110 (127) вольт , и на другой. Нумерация выводов одной катушки – аналогична другой, номера выводы на другой катушке помечаются (или условно помечаются) штрихом, т.е. 1', 2' и т.д.

– Сетевая обмотка, как правило, мотается первой (ближе всех к сердечнику).

– Сетевая обмотка может иметь отводы, или состоять из двух частей (например одна обмотка – выводы 1-2-3; или две части – выводы 1-2 и 3-4).

-У стержневого трансформатора  магнитный поток движется по сердечнику (по “кругу, эллипсу”), и направление магнитного потока одного стержня будет противоположно другому, поэтому для последовательного соединения двух половин обмоток, на разных катушках соединяют одноимённые контакты или начало с началом (конец с концом), т.е. 1 и 1', сеть подают на 2-2', или 2 и 2', сеть подают тогда на 1 и 1'.

– Для последовательного соединения обмоток, состоящих из двух частей на одной катушке – обмотки соединяют как обычно, начало с концом или конец с началом, (н-к или к-н), то есть вывод 2 и 3 (если, например имеются 2 обмотки с номерами выводов 1-2 и 3-4), так же и на другой катушке. Дальнейшее последовательное соединение получившихся двух полу-обмоток на разных катушках, смотри пунктом выше. (Пример такого соединения на схеме трансформатора ТС-40-1).

– Для параллельного соединения обмоток () на одной катушке соединение производится как обычно (н-н и к-к, или выводы 1-3 и 2-4 – если например имеются одинаковые обмотки с выводами 1-2 и 3-4).

Совет

Для разных катушек соединение производится следующим образом, к-н- отвод и н-к- отвод, или соединяются выводы 1-2' и 2-1' – если, например имеются одинаковые обмотки с выводами 1-2 и 1'-2'.

 

Ещё раз напоминаю о соблюдении техники безопасности, и лучше всего для экспериментов с напряжением 220 вольт иметь дома разделительный трансформатор (трансформатор с обмотками 220/220 вольт для гальванической развязки с промышленной сетью), который защитит от поражения током, при случайном прикосновении к оголённому концу провода.

Если возникнут какие то вопросы по статье, или найдёте в загашниках трансформатор (с подозрением, что он силовой), задавайте вопросы ЗДЕСЬ , поможем разобраться с его обмотками и подключением к сети.

 

Источник: http://vprl.ru/publ/tekhnologii/nachinajushhim/podkljuchaem_k_seti_neizvestnyj_transformator/9-1-0-7

Как подключить трансформатор?

Как подключить трансформатор?

Допустим, у вас в руках оказался трансформатор, о параметрах которого вы ничего не знаете. Эта статья как раз и расскажет, как правильно подключить трансформатор и какие операции необходимо перед этим проделать.

Для начала опишем, что из себя представляет трансформатор. Трансформатор – это устройство, которое преобразует величину напряжения за счет электромагнитной индукции.

Он обычно имеет две или более проволочных обмоток, которые охватывает ферромагнитный сердечник. Обмотки называются первичной и вторичной. По назначению бывают понижающими и повышающими.

В зависимости от сети, существуют трехфазные или однофазные.

Есть еще такой вид трансформаторов – автотрансформаторы. Их особенность заключается в том, что их первичная и вторичная обмотки соединены между собой, и они имеют несколько выводов с разным номиналом напряжения.

Также существуют трансформаторы тока. Их особенность заключается в том, что они преобразуют величину тока, а не напряжения. Обычно применяются для подключения контрольно-измерительных приборов к сетям, в которых протекают большие величины тока.

Определяем трансформатор

Вот у вас в руках находится трансформатор. На что же в первую очередь стоит обратить внимание? Посмотрите сначала на количество выводов обмоток. Трехфазные трансформаторы имеют 4 вывода (три фазы и ноль) на каждой обмотке, однофазные два (фаза и ноль). Если вы собираетесь использовать трансформатор в обычной городской квартире, то для этого подойдет только однофазный трансформатор.

Далее вам стоит определить тип трансформатора. Особенностью трансформатора тока является наличие мощного проводника (обычно выглядит в виде пластины) вокруг которого располагается обмотка. Особенностью автотрансформаторов является большие габариты и, зачастую, наличие регулятора. В быту такие трансформаторы не встречаются.

Если ни одно из описаний выше не подходит, то перед вами, наверняка, классический трансформатор.

Определяем обмотку

Для определения обмотки вам понадобится омметр или мультиметр. Если трансформатор понижающий, то сопротивление первичной обмотки будет гораздо больше, чем вторичной. Также это можно определить визуально. Размер сечения первичной обмотки меньше, чем размер вторичной. Но обычно это тяжело увидеть в силу технического исполнения трансформатора.

Если у трансформатора имеется несколько вторичных обмоток, то необходимо измерить напряжение каждой.

Подключение трансформатора напряжения

Опишем, как подключить понижающий трансформатор. В первую очередь надо выяснить, какие параметры тока нужны потребителю. Чаще бытовые приборы питаются постоянным током.

Так как в бытовой сети течет переменный ток, а преимущественно все устройства питаются постоянным, приходится применять выпрямитель.

В зависимости от прибора подключаете вторичную обмотку к прибору через схему выпрямления либо напрямую. Первичная обмотка подключается напрямую в сеть.

Подключение трансформатора тока

Как было сказано выше, трансформаторы тока применяются с контрольно-измерительными приборами. Первичная обмотка трансформатора подключается непосредственно в цепь, а вторичная – к контрольно-измерительному прибору. Обратите внимание, что вторичная обмотка всегда должна иметь низкоомную нагрузку или замыкаться накоротко.

Также вы можете прочитать материалы по теме в статье Как рассчитать трансформатор.

Источник: https://elhow.ru/bytovye-sovety/remont/kak-podkljuchit-transformator

Области применения разных схем соединения обмоток

СИЛОВЫЕ ТРАНСФОРМАТОРЫ 10(6)/0,4 КВ

ОБЛАСТИ ПРИМЕНЕНИЯ РАЗНЫХ СХЕМ СОЕДИНЕНИЯ ОБМОТОК

Отсутствие у изготовителей и заказчиков четкого представления о принципиальных отличиях свойств силовых трансформаторов малой мощности с разными схемами соединения обмоток приводит к ошибкам в их применении.

Причем неправильный выбор схемы соединения трансформаторных обмоток не только ухудшает технические показатели электроустановок и снижает качество электроэнергии, но и приводит к серьезным авариям.

Об этом напоминают нижегородские проектировщики Алевтина Ивановна Федоровская и Владимир Семенович Фишман, которые в своем материале акцентируют внимание на разнице в реакции трансформаторов на несимметричные токи, содержащие составляющую нулевой последовательности.

СХЕМЫ СОЕДИНЕНИЯ ОБМОТОК И СВОЙСТВА ТРАНСФОРМАТОРОВ

В соответствии с ГОСТ 11677-85 [1] силовые трансформаторы 10(6)/0,4 кВ мощностью от 25 до 250 кВА могут изготавливаться со следующими схемами соединения обмоток:

«звезда/звезда» – Y/Yн;

«треугольник–звезда» – Д/Yн;

«звезда–зигзаг» – Y/Zн.

Принципиальное отличие технических характеристик трансформаторов с различными схемами соединений обмоток заключается в разной реакции на несимметричные токи, содержащие составляющую нулевой последовательности.

Это прежде всего однофазные сквозные короткие замыкания, а также рабочие режимы с неравномерной загрузкой фаз.  Как известно, силовые трансформаторы 6(10)/0,4 кВ имеют трехстержневой стальной сердечник, на каждом стержне которого располагаются первичная и вторичная обмотки соответствующей фазы – А, В и С.

Обратите внимание

Магнитные потоки трех фаз в симметричных режимах работы циркулируют в стальном сердечнике трансформатора и за его пределы не выходят.

  Что происходит при нарушении симметрии с преобладанием нагрузки одной из фаз на стороне 0,4 кВ? Такие режимы работы исследуются с использованием теории симметричных составляющих [2].

Согласно этой теории любой несимметричный режим работы трехфазной сети представляется в виде геометрической суммы трех симметричных составляющих тока и напряжения: это составляющие прямой, обратной и нулевой последовательностей. Рассмотрим режим максимальной однофазной несимметрии – режим однофазного короткого замыкания (ОКЗ) на стороне 0,4 кВ трансформатора со схемой соединения обмоток Д/Yн. 

Картина токов симметричных составляющих в обмотках в этом режиме представлена на рис. 1. В неповрежденных фазах на стороне 0,4 кВ геометрическая сумма трех симметричных составляющих тока равна нулю (рабочей нагрузкой фаз пренебрегаем), а в поврежденной фазе эта сумма максимальна и равна току ОКЗ. Его величина определяется известной формулой:

где Uл – линейное напряжение;
R1, R0, X1, Х0 – соответственно активные и реактивные сопротивления прямой и нулевой последовательности.

СОПРОТИВЛЕНИЯ ПРЯМОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Сопротивления прямой последовательности R1 и X1 трансформаторов с разными схемами соединения обмоток определяются одними и теми же формулами и отличаются незначительно:

Заглянув в каталоги, нетрудно убедиться, что входящие в эти формулы известные величины Ркз и Uк от схем соединения обмоток трансформатора практически не зависят, а следовательно, от них не зависят и сопротивления прямой последовательности. 
В отличие от этих сопротивлений, сопротивления нулевой последовательности трансформаторов с разными схемами соединения обмоток отличаются принципиально.

СОПРОТИВЛЕНИЯ НУЛЕВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Рассмотрим картину векторов токов и магнитных потоков в трансформаторе со схемой соединения обмоток Д/Yн (рис. 2). В таких трансформаторах токи прямой, обратной и нулевой последовательностей протекают как в первичной, так и во вторичной обмотках.

Важно

При этом токи нулевой последовательности в первичной обмотке замыкаются внутри нее и в сеть не выходят.

Создаваемые токами нулевой последовательности первичных и вторичных обмоток намагничивающие силы (ампер-витки) направлены встречно и почти полностью компенсируют друг друга, что обуславливает небольшую величину реактивных сопротивлений трансформатора.

При этом сопротивления прямой и нулевой последовательностей приблизительно равны: R1 = R0; Х1 = Х0. В трансформаторах со схемой соединения обмоток Y/Zн в аналогичном режиме ОКЗ токи нулевой последовательности протекают лишь по вторичной обмотке трансформатора, однако магнитного потока нулевой последовательности они не создают, что объясняется особенностью схемы Zн – «зигзаг». 

Эта особенность состоит в том, что на каждом стержне трансформатора расположено по одной вторичной полуобмотке двух разных фаз (рис. 3).

В режиме ОКЗ намагничивающие силы, создаваемые токами нулевой последовательности в этих полуобмотках, направлены встречно и друг друга взаимно компенсируют. При этом токи нулевой последовательности в первичной обмотке отсутствуют.

В таких трансформаторах сопротивления нулевой последовательности оказываются меньше сопротивлений прямой последовательности: R0 < R1; Х0 < Х1.

Рис. 1. Токи симметричных составляющих в обмотках трансформатора в режиме однофазного короткого замыкания

IA21, IA22, IA20, IB21, IB22, IB20, IC21, IC22, IC20 – токи фаз А, В, С прямой, обратной и нулевой последовательностей вторичной обмотки;
IA11, IA12, IA10, IB11, IB12, IB10, IC11, IC12, IC10 – токи фаз А, В, С прямой, обратной и нулевой последовательностей первичной обмотки.

Совет

Рис. 3. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Zн 

Как следует из формулы (1), это обеспечивает большую величину тока ОКЗ у трансформаторов со схемами Y/Zн по сравнению с трансформаторами со схемами Д/Yн. Теперь обратимся к трансформаторам со схемой соединения обмоток Y/Yн.

Как известно, в обмотках, соединенных в звезду без выведенной нулевой точки, токи нулевой последовательности протекать не могут.

Поэтому в режиме ОКЗ токи этой последовательности протекают только во вторичной обмотке трансформатора.

Совпадающие по фазе магнитные потоки нулевой последовательности, создаваемые токами вторичной обмотки, выходят за пределы магнитного сердечника и замыкаются через металлический кожух трансформатора (рис. 4). Это определяет значительно большую величину сопротивлений нулевой последовательности таких трансформаторов: R0 >> R1; X0 >> X1.

Рис. 4. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Yн

Следует отметить, что в отличие от сопротивлений прямой последовательности трансформаторов, которые можно рассчитать, сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн расчету не поддаются. Их можно определить только экспериментально.

Обратите внимание

Величина этих сопротивлений во многом зависит от конструкции кожуха трансформатора, от величины зазоров между сердечником и кожухом и т.п.  Схема замера сопротивлений нулевой последовательности приведена в ГОСТ 3484.1-88 [3]. К сожалению, в этом документе указано, что такие замеры предприятия-производители проводят по просьбе заказчиков.

Вероятно, в последние годы таких просьб от заказчиков не поступает, а изготовители эти замеры самостоятельно не производят, считая, что в них нет необходимости. В результате проектировщики при выполнении расчетов пользуются старыми справочными данными.

Однако использовать устаревшую информацию надо чрезвычайно осторожно, ведь конструкции современных трансформаторов, в частности кожухов, а также материалы, из которых они изготовлены, существенно изменились.

Кроме того, имеющиеся на сегодня данные по сопротивлениям нулевой последовательности трансформаторов крайне скудны и противоречивы.

Так, согласно замерам Минского трансформаторного завода, выполненным много лет назад, реактивные сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн превышают сопротивления прямой последовательности в среднем в 10 раз.

В то же время в ГОСТ 3484.1-88 имеется фраза о том, что эти сопротивления могут отличаться на два порядка. И этим сегодня противоречия не исчерпываются[4].

ПОЧЕМУ НЕОБХОДИМО ЗНАТЬ РЕАЛЬНЫЕ ЗНАЧЕНИЯ СОПРОТИВЛЕНИЙ

Реальные значения сопротивлений нулевой последовательности знать необходимо, поскольку они определяют величину тока ОКЗ.

Чем больше эти сопротивления, тем меньше ток ОКЗ, соответственно труднее осуществить защиту трансформатора.

Важно

  В нормальных режимах работы большие сопротивления нулевой последовательности при неравномерной загрузке фаз трансформатора на стороне 0,4 кВ приводят к ухудшению качества электроэнергии у потребителя. 

Так, если принять R1 = R0, X1 = X0, что характерно для трансформаторов со схемами соединения обмоток Д/Yн, то получим:

Таким образом, при этих условиях ток ОКЗ на выводах 0,4 кВ трансформатора будет равен току трехфазного КЗ. Однако, если R0>>R1 и X0>>X1, что характерно для трансформаторов со схемами соединения обмоток Y/Yн, то величина тока ОКЗ оказывается значительно меньше тока трехфазного КЗ, то есть Iокз 

Источник: http://nomek.ru/node/259

Как прозвонить трансформатор или как определить обмотки трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru.

На первых порах занятий радиоэлектроникой у начинающих радиолюбителей, да и не только у радиолюбителей, возникает очень много вопросов, связанных с прозвонкой или определением обмоток трансформатора. Это хорошо, если у трансформатора всего две обмотки.

А если их несколько, да и еще у каждой обмотки несколько выводов. Тут просто караул кричи. В этой статье я расскажу Вам, как можно определить обмотки трансформатора визуальным осмотром и с помощью мультиметра.

Как Вы знаете, трансформаторы предназначены для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

Самый обычный трансформатор имеет одну первичную и одну вторичную обмотки. Питающее напряжение подается на первичную обмотку, а ко вторичной обмотке подключается нагрузка.

На практике же большинство трансформаторов может иметь несколько обмоток, что и вызывает затруднение в их определении.

1. Определение обмоток визуальным осмотром

При визуальном осмотре трансформатора обращают внимание на его внешний защитный слой изоляции, потому как у некоторых моделей на внешнем слое изображают электрическую схему с обозначением всех обмоток и выводов; у некоторых моделей выводы обмоток только маркируют цифрами. Также можно встретить старые отечественные трансформаторы, на внешнем слое которых указывают маркировку в виде цифрового кода, по которому в справочниках для радиолюбителей есть вся информация о конкретном трансформаторе.

Если трансформатор попался без опознавательных знаков, то обращают внимание на диаметр обмоточного провода, которым намотаны обмотки.

Совет

Диаметр провода можно определить по выступающим выводам концов обмоток, выпущенных для закрепления на контактных лепестках, расположенных на элементах каркаса трансформатора.

Как правило, первичную обмотку мотают проводом меньшего сечения, по отношению к вторичной. Диаметр провода вторичной обмотки всегда больше.

Исключением могут быть повышающие трансформаторы, работающие в схемах преобразователей напряжения и тока. Их первичная обмотка выполнена толстым проводом, так как генерирует высокое напряжение во вторичной обмотке. Но такие трансформаторы встречаются очень редко.

При изготовлении трансформаторов первичную обмотку, как правило, мотают первой. Ее легко определить по выступающим концам выводов обмотки, расположенных ближе к магнитопроводу. Вторичную обмотку наматывают поверх первичной, и поэтому концы ее выводов расположены ближе к внешнему слою изоляции.

В некоторых моделях сетевых трансформаторов, используемых в блоках питания бытовой радиоаппаратуры, обмотки располагают на пластмассовом каркасе, разделенном на две части: в одной части находится первичная обмотка, а в другой вторичная. К выводам первичной обмотки припаивают гибкий монтажный провод, а выводы вторичной обмотки оставляют в виде обмоточного провода.

2. Определение обмоток по сопротивлению

Когда предварительный анализ обмоток произведен, необходимо убедиться в правильности сделанных выводов, а заодно прозвонить обмотки на отсутствие обрыва. Для этого воспользуемся мультиметром. Если Вы не знаете как измерить сопротивление мультиметром, то прочитайте эту статью.

Вначале прозвоним обычный сетевой трансформатор, у которого всего две обмотки.
Мультиметр переводим в режим «Прозвонка» и производим измерение сопротивления предполагаемых первичной и вторичной обмоток. Здесь все просто: у какой из обмоток величина сопротивления больше, та обмотка и является первичной.

Это объясняется тем, что в маломощных трансформаторах и трансформаторах средней мощности первичная обмотка может содержать 1000…5000 витков, намотанных тонким медным проводом, и при этом может достичь сопротивления до 1,5 кОм. Тогда как вторичная обмотка содержит небольшое количество витков, намотанных толстым проводом, и ее сопротивление может составлять всего несколько десятков ом.

Теперь прозвоним трансформатор, у которого несколько обмоток. Для этого воспользуемся листком бумаги, ручкой и мультиметром. На бумаге будем зарисовывать и записывать величины сопротивлений обмоток.

Делается это так: одним щупом мультиметра садимся на любой крайний вывод, а вторым щупом по очереди касаемся остальных выводов трансформатора и записываем полученное значение сопротивлений.

Выводы, между которыми мультиметр покажет сопротивление, и будут являться выводами одной обмотки. Если обмотка без средних отводов, то сопротивление будет только между двумя выводами.

Если же обмотка имеет один или несколько отводов, то мультиметр покажет сопротивление между всеми этими отводами.

Обратите внимание

Например. Первичная обмотка может иметь несколько отводов, когда трансформатор рассчитан на работу в сети с напряжениями 110В, 127В и 220В. Вторичная обмотка также может иметь один или несколько отводов, когда хотят от одного трансформатора получить несколько напряжений.

Идем дальше. Когда первая обмотка и ее выводы будут найдены, то переходим к поиску следующей обмотки. Щупом опять садимся на следующий свободный вывод, а другим поочередно касаемся оставшихся выводов и записываем результат. И таким образом производим измерение, пока не будут найдены все обмотки.

Например. Между выводами с номерами 1 и 2 величина сопротивления составила 21 Ом, тогда как между остальными выводами мультиметр показал бесконечность. Из этого следует, что мы нашли обмотку, у которой выводы обозначены номерами 1 и 2. Нарисуем ее так:

Теперь щупом садимся на вывод 3, а другим щупом поочередно касаемся выводов с номерами от 4 до 10. Мультиметр показал сопротивление только между выводами 3, 4 и 5.

Причем между выводами 3 и 4 величина сопротивления составила 6 Ом, а между парой выводов 3, 5 и 4, 5 получилось по 3 Ома. Отсюда делаем вывод, что эта обмотка с отводом посередине, т.е.

пары 3, 5 и 4, 5 намотаны равным количеством витков, и что с этой обмотки снимается два одинаковых напряжения относительно общего вывода 5. Рисуем так:

Производим измерение далее.
Между выводами 6 и 7 величина сопротивления составила 16 Ом. Рисуем так:

Ну и между выводами 9 и 10 сопротивление составило 270 Ом.
А так как среди всех обмоток эта оказалась с самой большой величиной сопротивления, то она и является первичной. Рисуем так:

Важно

Вывод 8, к которому припаяна желто-зеленая жилка, ни как не звонился, поэтому смело утверждаем, что это экранирующая обмотка (экран), которую наматывают поверх первичной, чтобы устранить влияние ее магнитного поля на другие обмотки. Как правило, экранирующую обмотку соединяют с корпусом радиоаппаратуры.

В итоге у нас получилось четыре обмотки, из которых одна сетевая и три понижающих. Экранирующая обмотка обозначается пунктирной линией и располагается параллельно с сердечником. И вот на основе полученных результатов нарисуем электрическую схему трансформатора.

Теперь остается подать напряжение на первичную обмотку и измерить выходящие напряжения. Однако тут есть один момент, который необходимо знать, если Вы сомневаетесь в правильности определения первичной (сетевой) обмотки.

Здесь все просто: чтобы не сжечь обмотку трансформатора и ограничить через нее нежелательный ток нужно последовательно с этой обмоткой включить лампу накаливания на напряжение 220В и мощностью 40 – 100 Вт.

Если обмотка определена правильно, то нить накала лампы должна не гореть или еле тлеть.

Если же лампа будет гореть достаточно ярко, то есть вероятность того, что сетевая обмотка трансформатора рассчитана на питающее напряжение 110 — 127В или Вы ее прозвонили неправильно.

Второй момент, по которому можно судить о правильности подключения трансформатора к сети — это сама работа трансформатора. При правильном включении работа трансформатора практически беззвучна и сопровождается слегка ощутимой вибрацией.

Если же он будет громко гудеть и сильно вибрировать, и при этом будет нагреваться обмотка и из нее может пойти дым, то трансформатор однозначно включен неправильно.

В этом случае тут же отключайте трансформатор от сети, чтобы не повредить обмотку.

Совет

Однако и тут есть пару нюансов, которые необходимо учитывать, потому как у некоторых трансформаторов каркас с обмотками может неплотно прилегать к сердечнику и от этого работа трансформатора может сопровождаться некоторым гудением и вибрацией, но при этом обмотка греться не будет. В этом случае в зазор между сердечником и каркасом можно вставить кусочек дерева, пластмассы или кусок провода в изоляции и, тем самым, плотно зафиксировать каркас.

Также характерный гул и вибрацию может вызвать плохая стяжка пластин, из которых собран сердечник магнитопровода. Как правило, стягивание сердечника производится металлической скобой, специальными планками, болтами или стяжками, которые обеспечивают необходимую механическую прочность и жесткое соединение деталей сердечника.

Ну вот в принципе и все, что хотел сказать о прозвонке и определению обмоток трансформатора. Если у Вас возникли вопросы по этой теме, то задавайте их в комментариях к статье. Также, в дополнение к статье, можете посмотреть видеоролик.

Удачи!

Источник: https://sesaga.ru/kak-prozvonit-transformator-ili-kak-opredelit-obmotki-transformatora.html

Трехфазные трансформаторы

Содержание:

Электрическая энергия в промышленных масштабах не может передаваться в виде однофазного переменного тока. С этой целью успешно применяется трехфазный ток, а для его передачи используются трехфазные трансформаторы. Одним из способов трансформации трехфазного тока служит применение трех однофазных трансформаторов.

Соединение первичных и вторичных обмоток в этих устройствах осуществляется в одну из трехфазных систем – звезду или треугольник.

Именно по этому принципу происходит работа мощных однофазных трансформаторов, которыми оборудуются крупные электростанции.

Их первичные обмотки соединяются с соответствующими фазами генераторов, а вторичные обмотки, соединенные звездой, подключаются к соответствующим фазам линий электропередачи.

Принцип действия трехфазного трансформатора

Как видно из приведенной схемы, вместо трех однофазных устройств может быть использован один трехфазный трансформатор. В состав его магнитопровода входят три стержня, которые замыкаются ярмами сверху и снизу.

На каждый стержень наматывается первичная и вторичная обмотка, соединяемые затем звездой или треугольником. Каждый стержень с обмотками по своей сути является однофазным трансформатором.

Одновременно, он выполняет функцию отдельной фазы трехфазного трансформатора.

Под действием тока первичной обмотки во всех стержнях происходит появление магнитного потока. Следует учитывать принадлежность каждой такой обмотки к одной из фаз, входящих в трехфазную систему. Поэтому токи, протекающие по этим обмоткам, а также приложенные напряжения, относятся к трехфазным. Поэтому сформированные магнитные потоки тоже являются трехфазными.

Обратите внимание

Ранее считалось, что движение магнитного потока осуществляется по замкнутой траектории, то есть, проходя по стержню, он возвращается к его началу. В трехфазных трансформаторах такой обратный путь отсутствует, в нем просто нет необходимости, при условии одинаковой нагрузки фаз. Кроме того, отсутствует и необходимость нейтрального соединения в звезду.

Читайте также:  Для чего нужны неотключаемые линии в щите и как их сделать

Циркуляция каждого потока происходит лишь по собственному стержню. В конечном итоге все потоки сходятся в центральных частях верхнего и нижнего ярма.

В этих точках получается геометрическое сложение этих потоков, сдвинутых между собой на величину угла 120 градусов. В результате, геометрическая сумма сложенных величин, окажется равной нулю.

Следовательно, каждый магнитный поток проходит лишь по собственному стержню, обратного пути не имеет, а все три потока в сумме дают нулевое значение.

Движение потоков крайних фаз происходит не только по стержню. Оно захватывает половину каждого ярма. Поток в средней фазе будет проходить только по своему стержню. Поэтому значение токов холостого хода в фазах, расположенных по краям, всегда превышает аналогичное значение в средней фазе.

Как передается трехфазный ток

Первичным источником питания в большинстве случаев является электрическая сеть. Ее напряжение представлено в виде синусоиды с частотой 50 Гц.

Однако в тех случаях, когда линии электропередачи обладают большой протяженностью, происходит излучение передаваемой энергии в окружающее пространство, что приводит к дополнительным потерям.

Поэтому в цепях электропитания высокой мощности применяется трехфазное напряжение.

Для того чтобы уменьшить излучение, сумма напряжений на всех трех фазах в любое время должна быть равна нулю.

С этой целью производится сдвиг синусоидального напряжения по фазе в каждом проводе относительно друг друга на 120 градусов.

В таком состоянии передача электроэнергии может осуществляться в двух вариантах: с помощью четырех или трех проводов линии передачи. Условные схемы каждого варианта отображены на рисунке.

Четырехпроводная линия позволяет выдавать потребителю два вида напряжения: фазное (220 В) и линейное (380 В). Трехпроводная схема позволяет выдавать лишь линейные напряжения.

Важно

Формирование линейного напряжения описывается с помощью векторной диаграммы напряжений фаз. При положительном чередовании фаз, они условно увеличиваются по часовой стрелке.

Для соединения обмоток трехфазных трансформаторов используются два основных способа – звезда и треугольник.

Соединение звездой

Данный вид соединения рекомендуется рассматривать на примере схемы «звезда-звезда». В этом случае источник тока и нагрузка соединяются методом звезды.

На рисунке обозначение фазных напряжений, вырабатываемых вторичными обмотками трансформатора, выполнено символами UA, UB, и UC.

От фазных обмоток до нагрузки идут проводники, выполняющие функцию линейных проводов.

Следует учитывать наличие напряжения не только между нулевым и линейным проводами, но и между двумя линейными проводниками. Такое напряжение называется линейным и обозначается UAC или UCA.

Значение линейного напряжения всегда превышает фазное. Разница между ними составляет √3 раза, поскольку представляет собой векторную разность фазных напряжений. Таким образом, трехфазная линия электропередачи позволяет получить не только 380 В, но и 220 В, в зависимости от того по какой схеме включена нагрузка.

Соединение треугольником

Соединение вторичных обмоток в трехфазном трансформаторе треугольником будет выдавать одинаковое линейное и фазное напряжение, как и при соединении звездой, если напряжение составит 220 В. При одинаковом значении потребляемой мощности, линейные токи будут превышать фазные в √3 раза.

Трехфазная система напряжений представляет собой симметричную схему. Это означает, что и магнитная система, которую имеют все трехфазные трансформаторы, будет симметричной.

Такая система очень сложная в изготовлении, поэтому широкое распространение получила плоская конструкция, в которой отсутствует центральный стержень.

Необходимость в нем отпадает, поскольку сумма магнитных потоков здесь равна нулю.

Совет

Плоский вариант конструкции считается более технологичным и удобным при компоновке, хотя она и является несимметричной.

Токи в крайних фазах заметно превышают ток в средней фазе, из-за чего нарушаются фазовые углы.

Для ликвидации такой асимметрии сечение в верхнем и нижнем ярме увеличивается примерно на 10-15% по сравнению со стержнем. Однако, несмотря на принятые меры, некоторая асимметрия все равно остается.

Подключение трех однофазных трансформаторов к трехфазной сети

Источник: https://electric-220.ru/news/trekhfaznye_transformatory/2017-01-05-1151

Как устроен трансформатор? Как подключить трнасформатор к сети?

Как устроен трансформатор? Как подключить трансформатор к сети? FAQ Часть 2

В статье рассмотрены вопросы об устройстве, определении габаритной мощности, подключении и фазировании обмоток силовых низкочастотных трансформаторов.

Близкие темы.

Блок питания для усилителя низкой частоты из доступных деталей. УНЧ, часть 3.

Как подружить Блокнот с Калькулятором Windows, чтобы облегчить расчёты?

Магнитопровод низкочастотного трансформатора состоит из стальных пластин. Использование пластин вместо монолитного сердечника уменьшает вихревые токи, что повышает КПД и снижает нагрев.

Магнитопроводы вида 1, 2 или 3 получают методом штамповки.

Магнитопроводы вида 4, 5 или 6 получают путём навивки стальной ленты на шаблон, причём магнитопроводы типа 4 и 5 затем разрезаются пополам.

Магнитопроводы бывают:

1, 4 – броневые,

2, 5 – стержневые,

3, 6 – кольцевые.

Правда, кольцевых штампованных магнитопроводов я никогда не видел.

Чтобы определить сечение магнитопровода, нужно перемножить размеры «А» и «В». Для расчётов в этой статье используется размер сечения в сантиметрах.

Трансформаторы с витыми стержневым поз.1 и броневым поз.2 магнитопроводами.

Трансформаторы с штампованными броневым поз.1 и стержневым поз.2 магнитопроводами.

Трансформаторы с витыми кольцевыми магнитопроводами.

Подробнее о магнитопроводах в главе – «Разборка и сборка трансформаторов».

Вернуться наверх к меню

Как определить габаритную мощность трансформатора

Габаритную мощность трансформатора можно приблизительно определить по сечению магнитопровода. Правда, ошибка может составлять до 50%, и это связано с рядом факторов.

Габаритная мощность напрямую зависит от конструктивных особенностей магнитопровода, качества и толщины используемой стали, размера окна, величины индукции, сечения провода обмоток и даже качества изоляции между отдельными пластинами.

Чем дешевле трансформатор, тем ниже его относительная габаритная мощность.

Конечно, можно путём экспериментов и расчетов определить максимальную мощность трансформатора с высокой точностью, но смысла большого в этом нет, так как при изготовлении трансформатора, всё это уже учтено и отражено в количестве витков первичной обмотки.

Так что, при определении мощности, можно ориентироваться по площади сечения набора пластин проходящего через каркас или каркасы, если их две штуки.

Для облегчения расчётов, загляните по этой ссылке: Как подружить Блокнот с Калькулятором Windows, чтобы облегчить расчёты?

P = B * S² / 1,69

P – мощность в Ваттах,

B – индукция в Тесла,

S – сечение в см²,

1,69 – постоянный коэффициент.

Пример:

Сначала определяем сечение, для чего перемножаем размеры А и Б.

S = 2,5 * 2,5 = 6,25 см²

Затем подставляем размер сечения в формулу и получаем мощность. Индукцию я выбрал 1,5Tc, так как у меня броневой витой магнитопровод.

P = 1,5 * 6,25² / 1,69 = 35 Ватт

Если требуется определить необходимую площадь сечения манитопровода исходя из известной мощности, то можно воспользоваться следующей формулой:

S = ²√ (P * 1,69 / B)

Пример:

Обратите внимание

Нужно вычислить сечение броневого штампованного магнитопровода для изготовления трансформатора мощностью 50 Ватт.

S = ²√ (50 * 1,69 / 1,3) = 8см²

О величине индукции можно справиться в таблице. Не стоит использовать максимальные значения индукции, так как они могут сильно отличаться для магнитопроводов различного качества.

Максимальные ориентировочные значения индукции

Тип магнитопровода Магнитная индукция мах (Тл) при мощности трансформатора (Вт)
5-10 10-50 50-150 150-300 300-1000
Броневой штампованный 1,2 1,3 1,35 1,35 1,3
Броневой витой 1,55 1,65 1,65 1,65 1,6
Кольцевой витой 1,7 1,7 1,7 1,65 1,6

Вернуться наверх к меню

Где взять исходный трансформатор?

Проще всего подобрать готовый трансформатор на радиорынке, если, конечно, он есть в вашем городе. Там же можно договориться о перемотке трансформатора. Но, и трансформаторы, и услуги по их перемотке достаточно дороги.

На картинке часть лотка на радиорынке, где можно купить трансформаторы в городе Cishinau (Кишинёв).

Если у Вас в сарае или на балконе валяется какая-нибудь ненужная техника, то наверняка в ней есть и трансформаторы. Любой разборный сетевой трансформатор очень легко переделать под свои нужды. Самое главное, чтобы хватило его габаритной мощности.

Если мощность трансформатора меньше требуемой, то под нагрузкой выходное напряжение трансформатора может существенно просесть. Но, это тоже не беда, так как микросхемы типа TDA2030, TDA2040 и TDA2050 могут работать при значительном снижении напряжения питания, а именно: ±6, ±2,5 и ±4,5 Вольт соответственно.

Маловероятно, что вторичные обмотки найденного трансформатора подойдут по току и напряжению, но первичная обмотка уже рассчитана на напряжение осветительной сети и это самое лучшее подспорье, так как перемотать вторичную обмотку намного проще, чем первичную.

Хорошо, если это будет стандартный унифицированный трансформатор, тогда можно по его наименованию точно определить напряжения и максимально допустимые токи вторичных обмоток. Такие трансформаторы не поддаются разборке, поэтому прежде чем его покупать, нужно сверить название с данными в справочнике.

В конце статьи есть ссылка на справочник, в котором можно найти подробную информацию о большинстве унифицированных трансформаторов советского и постсоветского производства.

Важно

Если же это будет трансформатор без опознавательных знаков, то вероятность того, что его придётся перематывать, будет стремиться к 99%. За такой транс много платить не стоит.

При покупке трансформатора на кольцевом магнитопроводе, следует иметь в виду, что не каждый трансформатор можно разобрать, не повредив первичной обмотки.

  1. Годится для замены вторичной обмотки.
  2. Нужно мотать первичную обмотку.
  3. Нужно мотать первичную обмотку.

Вернуться наверх к меню

Как подключить неизвестный трансформатор к сети?

Прежде чем подключать трансформатор к сети, нужно прозвонить его обмотки омметром. У понижающих трансформаторов сопротивление сетевой обмотки намного больше, чем сопротивление вторичных обмоток и может отличаться в сто раз.

Первичных (сетевых) обмоток может быть несколько, либо единственная обмотка может иметь отводы, если трансформатор универсальный и рассчитан на использование при разных напряжениях сети.

В двухкаркасных трансформаторах на стержневых магнитопроводах, первичные обмотки распределены по обоим каркасам.

При пробном включении трансформаторов можно воспользоваться приведённой схемой. При неправильном включении предохранитель FU защитит сеть от короткого замыкания, а трансформатор от повреждения.

Рассчитываем ток предохранителя обычным способом:

I = P / U

I – ток, на который рассчитан предохранитель (Ампер),

P – габаритная мощность трансформатора (Ватт),

U – напряжение сети (~220 Вольт).

Пример:

35 / 220 = 0,16 Ампер

Ближайшее значение – 0,25 Ампер.

Схема измерения тока Холостого Хода (ХХ) трансформатора. Ток ХХ трансформатора обычно замеряют, чтобы исключить наличие короткозамкнутых витков или убедится в правильности подключения первичной обмотки.

При замере тока ХХ, нужно плавно поднимать напряжение питания. При этом ток должен плавно возрастать. Когда напряжение превысит 230 Вольт, ток обычно начинает возрастать более резко. Если ток начинает резко возрастать при напряжении значительно меньшем, чем 220 Вольт, значит, либо Вы неправильно выбрали первичную обмотку, либо она неисправна.

Мощность (Вт) Ток ХХ (мА)
5 – 10 10 – 200
10  -50 20 – 100
50 – 150 50 – 300
150 – 300 100 – 500
300 – 1000 200 – 1000

Ориентировочные токи ХХ трансформаторов в зависимости от мощности.

Нужно добавить, что токи ХХ трансформаторов даже одной и той же габаритной мощности могут очень сильно отличаться. Чем более высокие значения индукции заложены в расчёт, тем меньше ток ХХ.

Схема подключения, при определения количества витков на вольт.

Вернуться наверх к меню

Как сфазировать обмотки трансформатора?

На электрических схемах принято отмечать жирной точкой начало намотки отдельных катушек трансформатора, если это необходимо. Но, выводы катушек реального трансформатора могут не иметь вообще никакой маркировки.

При прозвонке неизвестного трансформатора, может понадобиться определить начало намотки некоторых катушек.

Например, если две отдельные части первичной обмотки включить навстречу друг другу, то они просто могут выйти из строя. На картинке изображён трансформатор, у которого первичная обмотка состоит из двух частей и эти части подключены в противофазе, что недопустимо (!).

Совет

Для фазировки обмоток можно использовать стрелочный вольтметр постоянного тока и батарейку (химический элемент питания) включённые по приведённой схеме.

Диапазон измеряемого напряжения вольтметра нужно подобрать так, чтобы было хорошо заметно движение стрелки. Начинать лучше с большего диапазона.

Если при замыкании выключателя, стрелка вольтметра отклонилась в прямом направлении, то за начало фазируемых обмоток нужно принять «+» (плюс) батареи и «+» вольтметра.

Если стрелка отклонилась в обратном направлении, обмотки подключены в противофазе относительно «+» батареи и «+» вольтметра.

to see this player.

Нужно иметь в виду, что при замыкании выключателя, стрелка вольтметра будет отклоняться в одну сторону, а при размыкании в противоположную, из-за возникшей ЭДС самоиндукции. Ориентироваться нужно по отклонению стрелки именно в момент включения выключателя.

При подключении катушек витых стержневых или штампованных стержневых трансформаторов, у которых два симметрично расположенных каркаса, нужно иметь в виду, что силовые магнитные линии выходят из одного каркаса, но входят в другой.

На картинке изображён трансформатор, у которого первичная обмотка состоит из двух симметричных катушек с выводами 1, 2 и 1’, 2’. Катушки расположены на двух симметрично расположенных друг относительно друга каркасах.

Например, чтобы соединить катушки такого трансформатора последовательно, нужно соединить выводы 2 и 2’, а сеть подключить к выводам 1, 1’.

Вернуться наверх к меню

Страницы 1 2 3 4

5 Июль, 2010 (20:37) в Источники питания, Сделай сам, Технологии

Источник: https://oldoctober.com/ru/transformer_2/

Ссылка на основную публикацию
Adblock
detector