Можно ли меняя начало и конец обмоток трансформатора получить 6в?

Последовательное и параллельное включение обмоток

Бывает ситуация, когда у трансформатора нет обмотки на нужное напряжение или ток, зато есть много всяких разных обмоток. Что делать?

Для увеличения напряжения, обмотки можно соединять последовательно. При этом общее напряжение будет равно сумме напряжений всех обмоток. Максимальный ток будет равен наименьшему из номинальных токов всех этих обмоток.

Обмотки надо сфазировать, иначе напряжения в них могут не складываться, а вычитаться (можно ра-

Обратите внимание

ботать и в такой ситуации, но КПД трансформатора снизится). Делается это так: первая и вторая обмотки соединяются последовательно, а к их концам подключается вольтметр переменного тока (рис. 16).

Вольтметр должен показать сумму напряжений обмоток 1 и 2 (это синфазное, или согласное включение обмоток).

Если показания вольтметра меньше (в случае противофазного, или встречного включения он покажет разность напряжений обмоток), выводы обмотки 2 надо поменять местами.

В случае, когда последовательно соединяется большее количество обмоток, то все повторяется, при этом роль обмотки 1 выполняют уже соединенные обмотки, а роль обмотки 2 – вновь подключаемая обмотка.

На рис. 16 точкой возле обмотки обозначается ее условное начало.

Оно имеет такой смысл: если на выводе с точкой первичной обмотки присутствует положительный полупериод напряжения (грубо говоря “плюс”), то и на выводах с точкой всех вторичных обмоток в этот момент также “плюс”.

Поэтому, зная условные начала обмоток, можно сразу соединить все обмотки синфазно. К сожалению, на самом трансформаторе начала обмоток обычно не обозначают.

Если в трансформаторе много одинаковых вторичных обмоток на маленький ток, то по идее их можно соединить параллельно, тогда общий их ток будет равен сумме токов отдельных обмоток.

На самом деле это очень “тонкий” вопрос. В жизни практически никогда не бывает, чтобы две обмотки были абсолютно одинаковыми. Хоть малюсенькая разница в их напряжениях, но есть. И внутри параллельных обмоток могут возникнуть уравнительные токи иногда маленькой, а иногда и большой величины.

Важно

Может получиться, что трансформатор здорово греется, а наружу тока почти не выдает. Но бывает и так, что производители мотают трансформатор в несколько проводов одновременно.

Тогда обмотки получаются практически совсем одинаковыми и такие обмотки параллельно соединять можно (хотя, ГОСТ 14233-84 “Трансформаторы питания для бытовой аппаратуры” дает допуск на асимметрию обмоток, включаемых параллельно, до 3% от напряжения обмотки – это довольно большое рассогласование!).

При этом очень важно правильно сфазировать обмотки, иначе будет короткое замыкание. Только надо быть абсолютно уверенным в том, что обмотки одинаковы. Поэтому давайте для надежности пользоваться таким правилом:

Если производитель явно указывает, что обмотки трансформатора можно соединять параллельно, то можно. Если такого явного указания нет – то нельзя.

Как правильно сфазировать обмотки? Начала всех обмоток соединить вместе – это будет начало общей обмотки. Конец общей обмотки составят соединенные вместе концы всех обмоток.

Если неизвестны начала и концы обмоток, то сначала соедините между собой один провод от одной обмотки и один от другой. Подайте питание на трансформатор и измерьте напряжение между оставшимися концами этих обмоток (рис. 17).

Если между ними напряжение равное удвоенному напряжению каждой из обмоток, то концы одной из обмоток надо поменять местами. Снова подайте питание и снова измерьте напряжение. Если оно равно нулю, то все ОК, соединяете концы, между которыми измеряли напряжение и пользуетесь. Если же напряжение не равно нулю, то обмотки разные, и их паралле- лить нельзя!

А если напряжение на двух обмотках получилось не

Рис. 17

ноль, но очень близкое к нулю? Давайте рассмотрим пример. Сопротивление вторичной обмотки тороидального трансформатора 75ВА 2×28В равно примерно 0,5 Ом. Допустим мы хотим получить такую обмотку из двух, каждая из которых рассчитана на вдвое меньший ток.

Совет

Тогда сопротивление каждой обмотки вдвое выше и будет равно 1 Ом. С точки зрения уравнительных токов обмотки включены последовательно (значит, общее сопротивление удваивается) и к ним прикладывается разность напряжений между обмотками. Допустим, эта разность напряжений равна 0,5 вольт.

Тогда уравнительный ток будет

2.            Если вольтметр показывает разность напряжений обмоток в точности равную нулю, это означает, что и формы напряжений обмоток, и их величины одинаковы (что уже само по себе редкое явление).

Но кто поручится, что при изменении напряжения в сети, или изменении тока, потребляемого нагрузкой, формы токов так одинаковыми и останутся? Это не всегда случается даже у однотипных трансформаторов (из-за разброса свойств стали они могут немного по-разному насыщаться), а для трансформаторов разных типов это вообще нереально.

Поэтому давайте не будем рисковать, и не будем создавать себе возможные проблемы, соединяя параллельно обмотки разных трансформаторов!

Бросок тока при включении трансформатора. При включении трансформатора в сеть даже на холостом ходу возникает всплеск тока (пусковой ток, являющийся следствием переходного процесса в трансформаторе), который может превышать номинальный в десятки раз.

Длительность пускового тока обычно не превышает 0,02…0,03 секунды, поэтому он не приводит к перегреву обмоток. Однако в этот момент на проводники обмоток действуют значительные электромагнитные силы, которые могут сдвинуть плохо закрепленные витки.

С течением времени витки разбалтываются, и акустический шум трансформатора растет.

Другим неприятным последствием пускового тока является перегорание предохранителя в цепи первичной обмотки.

Величина пускового тока определяется как моментом времени включения (по отношению к начальной фазе сетевого напряжения), так и параметрами трансформатора.

В частности, повышение числа витков первичной обмотки снижает пусковой ток, что еще раз говорит в пользу применения трансформаторов с пониженной рабочей индукцией.

Обратите внимание

И наоборот, у трансформатора, работающего близко к насыщению, бросок тока при включении может быть очень большим.

Трансформаторы с пониженной рабочей индукцией.

Существует мнение (вполне оправданное), что хорошие результаты дает применение в усилителях трансформаторов с пониженной индукцией, работающих практически на линейном участке кривой намагничивания (конец участка А – начало участка В на рис. 9).

Действительно, снижение индукции уменьшает потоки рассеяния, а значит и магнитные поля трансформатора, а также снижает пусковой ток. Это достигается увеличением числа витков в обмотках в 1,2…1,3 раза выше номинального.

Уменьшение полей рассеяния снижает индуктивность обмоток, но из-за повышения длины провода, возрастает их активное сопротивление, поэтому просадки напряжения под нагрузкой практически не меняются, а вот нагрев обмоток растет. Для нормализации нагрева увеличивают мощность трансформатора, повышая диаметр проводов обмоток.

Таким образом, чтобы получить трансформатор с пониженной рабочей индукцией, необходимо изготовить трансформатор с мощностью в 1,3…1,5 раз больше требуемой, все обмотки которого рассчитаны на напряжение в 1,2…1,3 раза больше необходимого.

Необходимо отметить, что при этом улучшается только работа самого трансформатора, на усилитель это никак не сказывается (если только магнитные поля трансформатора не действуют на усилитель, но к этому необходимо стремиться в любом случае).

Поэтому затраты на такой специальный трансформатор практически никогда не окупаются (кроме техники очень высокого качества, там применение подобного трансформатора не только оправдано, но и зачастую просто необходимо), а в конструкциях начинающих радиолюбителей – наверняка.

Поэтому “низкоиндукционный” трансформатор имеет смысл применять, если он уже есть, а если его нет, то и не надо.

Важно

Подмагничивание сердечника постоянным током. Трансформатор – устройство, предназначенное для работы на переменном токе (причем только своей, или близкой к ней частоты – если частота тока сильно отличается от номинальной, он может работать хуже или не работать вообще).

Постоянный ток он не преобразует, потому что ЭДС в обмотках наводится только изменяющимся магнитным полем, которое получается, если ток переменный. И на постоянный ток не влияет индуктивность обмоток.

Поэтому если на трансформатор подать 220 вольт постоянного тока, трансформатор сгорит – активное сопротивление первичной обмотки маленькое, и ток будет огромным.

А что случится, если через обмотку все же протекает постоянный ток? На переменном токе даже очень большие токи обмоток практически не изменяют рабочий магнитный поток, так как влияния первичной и вторичной обмоток взаимно компенсируются.

На постоянном токе взаимодействия обмоток и взаимной компенсации токов не происходит. Постоянный ток создаст ничем не компенсируемое магнитное поле, которое будет подмагничивать сердечник, изменяя индукцию в нем.

Если это поле достаточно велико, то сердечник начнет насыщаться со всеми вытекающими отсюда последствиями.

Так что появления постоянного тока (заметной величины) в трансформаторе следует избегать. Исключение составляют выходные трансформаторы ламповой техники – в них предусмотрен зазор в сердечнике для исключения насыщения. Но и в таком случае трансформатору работать не очень комфортно.

Источник: Рогов И.Е. Конструирование источников питания звуковых усилителей. – Москва: Инфра- Инженерия, 2011. – 160 с.

Источник: http://nauchebe.net/2012/04/posledovatelnoe-i-parallelnoe-vklyuchenie-obmotok/

Подключаем к сети неизвестный трансформатор

Николай Петрушов

Как разобраться с обмотками трансформатора, как его правильно подключить к сети и не “спалить” и как определить максимальные токи вторичных обмоток??? Такие и подобные вопросы задают себе многие начинающие радиолюбители.

В этой статье я постараюсь ответить на подобные вопросы и на примере нескольких трансформаторов (фото в начале статьи), разобраться с каждым из них..Надеюсь, эта статья будет полезной многим радиолюбителям.

Для начала запомните общие особенности для броневых трансформаторов 

– Сетевая обмотка, как правило мотается первой (ближе всех к сердечнику) и имеет наибольшее активное сопротивление (если только это не повышающий трансформатор, или трансформатор имеющий анодные обмотки).

– Сетевая обмотка может иметь отводы, или состоять например из двух частей с отводами.

– Последовательное соединение обмоток (частей обмоток) у броневых трансформаторов производится как обычно, начало с концом или выводы 2 и 3 (если например имеются две обмотки с выводами 1-2 и 3-4).

– Параллельное соединение обмоток (только для обмоток с одинаковым количеством витков), производится как обычно начало с началом одной обмотки, и конец с концом другой обмотки (н-н и к-к, или выводы 1-3 и 2-4 – если например имеются одинаковые обмотки с выводами 1-2 и 3-4).

Общие правила соединения вторичных обмоток для всех типов трансформаторов

Начнём с маленького трансформатора, придерживаясь вышеописанных особенностей (левый на фото). Внимательно его осматриваем. Все выводы у него пронумерованы и провода подходят к следующим выводам; 1, 2, 4, 6, 8, 9, 10, 12, 13, 22, 23, и 27.

Дальше необходимо прозвонить омметром все выводы между собой, чтобы определить количество обмоток и нарисовать схему трансформатора. Получается следующая картина. Выводы 1 и 2 – сопротивление между ними 2,3 Ома, 2 и 4 – между ними 2,4 Ома, между 1 и 4 – 4,7 Ома (одна обмотка со средним выводом).

Совет

Дальше 8 и 10 – сопротивление 100,5 Ома (ещё одна обмотка). Выводы 12 и 13 – 26 Ом (ещё обмотка). Выводы 22 и 23 – 1,5 Ома (последняя обмотка). Выводы 6, 9 и 27 не прозваниваются с другими выводами и между собой – это скорее всего экранные обмотки между сетевой и другими обмотками.

Читайте также:  Какой вводной автомат выбрать для кабеля сип 4*50

Эти выводы в готовой конструкции соединяются между собой и присоединяются к корпусу (общий провод). Ещё раз внимательно осматриваем трансформатор.

Сетевая обмотка, как мы знаем, мотается первой, хотя бывают и исключения.

На фото плохо видно, поэтому продублирую. К выводу 8 подпаян провод, выходящий от самого сердечника (то есть он к сердечнику ближе всех), потом идёт провод к выводу 10 – то есть обмотка 8-10 намотана первой (и имеет самое высокое активное сопротивление) и скорее всего является сетевой.
Теперь по полученным данным от прозвонки, можно нарисовать и схему трансформатора.

Остаётся попробовать подключить предполагаемую первичную обмотку трансформатора к сети 220 вольт и проверить ток холостого хода трансформатора.
Для этого собираем следующую цепь.

Последовательно с предполагаемой первичной обмоткой трансформатора (у нас это выводы 8-10), соединяем обычную лампу накаливания мощностью 40-65 ватт (для более мощных трансформаторов 75-100 ватт).

Лампа в этом случае сыграет роль своеобразного предохранителя (ограничителя тока), и защитит обмотку трансформатора от выхода её из строя при подключении к сети 220 вольт, если мы выбрали не ту обмотку или обмотка не рассчитана на напряжение 220 вольт.

Максимальный ток, протекающий в этом случае по обмотке (при мощности лампы 40 ватт), не превысит 180 миллиампер. Это убережёт Вас и испытываемый трансформатор от возможных неприятностей.

-И вообще, возьмите себе за правило, если Вы не уверены в правильности выбора сетевой обмотки, её коммутации, в установленных перемычках обмотки, то первое подключение к сети всегда производить с последовательно включённой лампой накаливания.

Соблюдая осторожность, подключаем собранную цепь к сети 220 вольт (у меня напряжение сети чуть больше, а точнее – 230 вольт). Что видим? Лампа накаливания не горит. Значит сетевая обмотка выбрана правильно и дальнейшее подключение трансформатора можно производить без лампы.

Подключаем трансформатор без лампы и измеряем ток холостого хода трансформатора.

Ток холостого хода (ХХ) трансформатора измеряется так; собирается аналогичная цепь, что мы собирали с лампой (рисовать уже не буду), только вместо лампы включается амперметр, который предназначен для измерения переменного тока (внимательно осмотрите свой прибор на наличие такого режима).

Амперметр сначала устанавливается на максимальный предел измерения, потом, если его много, амперметр можно перевести на более низкий предел измерения. Соблюдая осторожность – подключаем к сети 220 вольт, лучше через разделительный трансформатор.

Обратите внимание

Если трансформатор мощный, то щупы амперметра на момент включения трансформатора в сеть лучше закоротить или дополнительным выключателем, или просто закоротить между собой, так как пусковой ток первичной обмотки трансформатора превышает ток холостого хода в 100-150 раз и амперметр может выйти из строя.

После того, как трансформатор включён в сеть – щупы амперметра разъединяются и измеряется ток.

Ток холостого хода трансформатора должен быть в идеале 3-8% от номинального тока трансформатора. Вполне считается нормальным и ток ХХ 5-10% от номинального.

То есть если трансформатор с расчётной номинальной мощностью 100 ватт, ток потребления его первичной обмоткой будет 0,45 А, значит ток ХХ должен быть в идеале 22,5 мА (5% от номинала) и желательно, чтобы он не превышал 45 мА (10% от номинала).

Как видим, ток холостого хода чуть более 28 миллиампер, что вполне допустимо (ну может чуток завышен), так как на вид этот трансформатор мощностью 40-50 ватт. Измеряем напряжения холостого хода вторичных обмоток.

Получается на выводах 1-2-4 17,4 + 17,4 вольта, выводы 12-13 = 27,4 вольта, выводы 22-23 = 6,8 вольта (это при напряжении сети 230 вольт). Дальше нам нужно определить возможности обмоток и их нагрузочные токи.

Как это делается?

Если есть возможность и позволяет длина подходящих к контактам проводов обмоток, то лучше измерить диаметры проводов (грубо до 0,1 мм – штангенциркулем и точно микрометром), и по таблице ЗДЕСЬ , при средней плотности тока 3-4 А/мм.кв. – находим токи, которые способны выдать обмотки.

Если измерить диаметры проводов не представляется возможным, то поступаем следующим образом.

Важно

Нагружаем по очереди каждую из обмоток активной нагрузкой, в качестве которой может быть что угодно, например лампы накаливания различной мощности и напряжения (лампа накаливания мощностью 40 ватт на напряжение 220 вольт имеет активное сопротивление 90-100 Ом в холодном состоянии, лампа мощностью 150 ватт – 30 Ом), проволочные сопротивления (резисторы), нихромовые спирали от электро плиток, реостаты и т.д. Нагружаем до тех пор, пока напряжение на обмотке не уменьшится на 10% относительно напряжения холостого хода.

Потом измеряем ток нагрузки.

Этот ток и будет являться максимальным током, который обмотка способна будет выдавать длительное время не перегреваясь.

Я беру в расчёт статическую нагрузку, и у меня получилось; обмотка 1-2-4 ток нагрузки (при снижении напряжения обмотки на 10% относительно напряжения холостого хода) – 0,85 ампер (мощность около 27 ватт), обмотка 12-13 (на фото выше) ток нагрузки 0,19-0,2 ампера (5 ватт) и обмотка 22-23 – 0,5 ампер (3,25 ватт). Номинальная мощность трансформатора получается около 36 ватт (округляем до 40).

Да, ещё хочу рассказать о сопротивлении первичной обмотки. Для маломощных трансформаторов оно может составлять десятки, или даже сотни Ом, а для мощных – единицы Ом. Очень часто на форуме задают такие вопросы; “Измерил мультиметром сопротивление первичной обмотки ТС250, а оно оказалось 5 Ом.

Не мало ли оно для сети 220 вольт, я боюсь его включать в сеть.

Подскажите – нормально ли оно?” Так как все мультиметры измеряют сопротивление постоянному току (активное сопротивление), то волноваться не стоит, потому что для переменного тока частотой 50 герц эта обмотка будет иметь совсем другое сопротивление (индуктивное), которое будет зависеть от индуктивности обмотки и частоты переменного тока. Если у Вас есть, чем измерить индуктивность, то Вы сами можете рассчитать сопротивление обмотки переменному току (индуктивное сопротивление). Например;

Индуктивность первичной обмотки при измерении составила 6 Гн,, идём

сюда и вводим эти данные (индуктивность 6 Гн, частота тока сети 50 Гц), смотрим – получилось 1884,959 (округляем 1885), это и будет индуктивное сопротивление этой обмотки для частоты 50 Гц. Отсюда Вы можете вычислить и ток холостого хода этой обмотки для напряжения 220 вольт – 220/1885=0.

116 А (116 миллиампер), да, сюда ещё можно добавить и активное сопротивление 5 Ом, то есть будет 1890.
Естественно, что для частоты 400 Гц будет совсем другое сопротивление этой обмотки.

Аналогично проверяются и другие трансформаторы. На фото второго трансформатора видно, что выводы подпаяны к контактным лепесткам 1, 3, 4, 6, 7, 8, 10, 11, 12.

После прозвонки становится ясно, что у трансформатора 4 обмотки.

Первая на выводах 1 и 6 (24Ома), вторая 3-4 (83 Ома), третья 7-8 (11,5 Ом), четвёртая 10-11-12 с отводом от середины (0,1+0,1 Ом).

Причём хорошо видно, что обмотка 1 и 6 намотана первой (белые выводы), потом идёт обмотка 3-4 (чёрные выводы). 24 Ома активного сопротивления первичной обмотки вполне достаточно. У более мощных трансформаторов активное сопротивление обмотки доходит до единиц Ом. Вторая обмотка 3-4 (83 Ома), возможно повышающая.

Здесь можно замерить диаметры проводов всех обмоток, кроме обмотки 3-4, выводы которой выполнены чёрным, многожильным, монтажным проводом.

Совет

Дальше подключаем трансформатор через лампу накаливания. Лампа не горит, трансформатор на вид мощностью 100-120, замеряем ток холостого хода, получается 53 миллиампера, что вполне допустимо.

Замеряем напряжения холостого хода обмоток. Получается 3-4 – 233 вольта, 7-8 – 79,5 вольта, и обмотка 10-11-12 по 3,4 вольта (6,8 со средним выводом).

Обмотку 3-4 нагружаем до падения напряжения на 10% от напряжения холостого хода, и измеряем протекающий ток через нагрузку.

Максимальный ток нагрузки этой обмотки, как видно из фотографии – 0,24 ампера. Токи других обмоток определяются из таблицы плотности тока, исходя из диаметра провода обмоток.

Обмотка 7-8 намотана проводом 0,4 и накальная проводом 1,08-1,1. Соответственно токи получаются 0,4-0,5 и 3,5-4,0 ампера. Номинальная мощность трансформатора получается около 100 ватт.

Остался ещё один трансформатор. У него контактная планка с 14-ю контактами, верх 1, 3, 5, 7, 9, 11, 13 и низ соответственно чётные. Он мог переключаться на различные напряжения сети (127,220.

237) вполне возможно, что первичная обмотка имеет несколько отводов, или состоит из двух полу-обмоток с отводами.

Прозваниваем, и получается такая картина: Выводы 1-2 = 2,5 Ом; 2-3 = 15,5 Ом (это одна обмотка с отводом); 4-5 = 16,4 Ом; 5-6 = 2,7 Ом (ещё одна обмотка с отводом); 7-8 = 1,4 Ома (3-я обмотка); 9-10 = 1,5 Ом (4-я обмотка);11-12 = 5 Ом (5-я обмотка) и 13-14 (6-я обмотка).

Подключаем к выводам 1 и 3 сеть с последовательно включённой лампой накаливания.

Лампа горит в половину накала. Измеряем напряжение на выводах трансформатора, оно равняется 131 вольт.

Обратите внимание

Значит не угадали и первичная обмотка здесь состоит из двух частей, и подключенная часть при напряжении 131 вольт начинает входить в насыщение (повышается ток холостого хода) и по этому нить лампы раскалилась.

Соединяем перемычкой выводы 3 и 4, то есть последовательно две обмотки и подключаем сеть (с лампой) к выводам 1 и 6.

Ура, лампа не горит. Измеряем ток холостого хода.

Ток холостого хода равен 34,5 миллиампер.

Здесь скорее всего (так, как часть обмотки 2-3, и часть второй обмотки 4-5 имеют большее сопротивление, то эти части рассчитаны на 110 вольт, а части обмоток 1-2 и 5-6 по 17 вольт, то есть общее для одной части 1278 вольт) 220 вольт подключалось к выводам 2 и 5 с перемычкой на выводах 3 и 4 или наоборот. Но можно оставить и так, как мы подключили, то есть все части обмоток последовательно. Для трансформатора это только лучше.
Всё, сеть нашли, дальнейшие действия аналогичны описанным выше.

Ещё немного о стержневых трансформаторах. Например имеется такой (фото выше). Какие для них общие особенности?

– У стержневых трансформаторов, как правило две симметричные катушки, и сетевая обмотка разделена на  две катушки, то есть на одной катушке намотано витков на 110 (127) вольт , и на другой. Нумерация выводов одной катушки – аналогична другой, номера выводы на другой катушке помечаются (или условно помечаются) штрихом, т.е. 1', 2' и т.д.

– Сетевая обмотка, как правило, мотается первой (ближе всех к сердечнику).

Читайте также:  Не меняютя показания на электросчетчике пума-103.1 м

– Сетевая обмотка может иметь отводы, или состоять из двух частей (например одна обмотка – выводы 1-2-3; или две части – выводы 1-2 и 3-4).

-У стержневого трансформатора  магнитный поток движется по сердечнику (по “кругу, эллипсу”), и направление магнитного потока одного стержня будет противоположно другому, поэтому для последовательного соединения двух половин обмоток, на разных катушках соединяют одноимённые контакты или начало с началом (конец с концом), т.е. 1 и 1', сеть подают на 2-2', или 2 и 2', сеть подают тогда на 1 и 1'.

– Для последовательного соединения обмоток, состоящих из двух частей на одной катушке – обмотки соединяют как обычно, начало с концом или конец с началом, (н-к или к-н), то есть вывод 2 и 3 (если, например имеются 2 обмотки с номерами выводов 1-2 и 3-4), так же и на другой катушке. Дальнейшее последовательное соединение получившихся двух полу-обмоток на разных катушках, смотри пунктом выше. (Пример такого соединения на схеме трансформатора ТС-40-1).

– Для параллельного соединения обмоток () на одной катушке соединение производится как обычно (н-н и к-к, или выводы 1-3 и 2-4 – если например имеются одинаковые обмотки с выводами 1-2 и 3-4).

Для разных катушек соединение производится следующим образом, к-н- отвод и н-к- отвод, или соединяются выводы 1-2' и 2-1' – если, например имеются одинаковые обмотки с выводами 1-2 и 1'-2'.

 

Ещё раз напоминаю о соблюдении техники безопасности, и лучше всего для экспериментов с напряжением 220 вольт иметь дома разделительный трансформатор (трансформатор с обмотками 220/220 вольт для гальванической развязки с промышленной сетью), который защитит от поражения током, при случайном прикосновении к оголённому концу провода.

Если возникнут какие то вопросы по статье, или найдёте в загашниках трансформатор (с подозрением, что он силовой), задавайте вопросы ЗДЕСЬ , поможем разобраться с его обмотками и подключением к сети.

 

Источник: http://vprl.ru/publ/tekhnologii/nachinajushhim/podkljuchaem_k_seti_neizvestnyj_transformator/9-1-0-7

Как определить начало и конец обмотки в двигателе

В этой статье я расскажу способ, как определить начало и конец обмотки в асинхронном трёхфазном двигателе.

Когда вам может потребоваться данный материал? Только в том случае, если у вас имеется в коробке брно шесть проводов одинакового цвета и на них нет никаких обозначений.

Важно

Или ваш двигатель был соединен треугольником, а вы хотите получить возможность соединить его звездой. Как это сделать я писал здесь.

Чтобы проще было объяснять материал, сначала пройдемся по принятым маркировкам выводов обмоток двигателей.

Выводы асинхронного двигателя. Маркировка выводов асинхронного двигателя

Встречаются различные маркировки выводов обмоток двигателя. Отечественная маркировка от С1 до С6 и международная, которую вы видите на рисунке.

В наше время встречаются обе маркировки, но для «обучения» мы будем применять новые обозначения, как более наглядные.

Ранее, я уже говорил, что начало и конец обмоток понятия абсолютно условные, главное условие, которое играет важную роль это такое соединение обмоток, когда магнитные потоки не направлены встречно. Если два одинаковых потока направить встречно, они как бы уничтожают друг друга.

Нам же надо получить согласованное направление магнитных потоков. В двигателе находятся три обмотки. Грубо говоря, двигатель, это трансформатор с тремя обмотками и сердечником в виде статора.

Таким образом, обмотки в двигателе связывает магнитный поток, который протекает по статору, а его создает ток, который протекает по обмоткам. Ротор – это лишь приятная «вкусняшка», наличие которой позволяет получить из электрической энергии механическую.

Начало и конец обмоток электродвигателя

Ну что ж, приступим. Прежде, чем начинать процедуру, вам нужно подготовиться. Для этого вам потребуются:

  • мультиметр или лампа накаливания (предпочтительнее, конечно же, мультиметр)
  • маркеры для проводов
  • знание техники безопасности, поскольку вы будете работать с опасным напряжением
  • обычная сетевая вилка с проводом
  • что-то, чем вы будете соединять провода, когда приступите к поиску выводов обмотки
  • ну и материал данной статьи.

В качестве маркеров можно использовать кембрики, бумагу с резинками, цветную изоленту и обычные перманентные маркеры, в общем, что угодно, что позволит вам промаркировать выводы. Вам потребуется шесть маркеров, на которых вы напишете обозначения начала и концов обмоток.

Первым делом нужно определить обмотки двигателя

Названия обмоток тоже абсолютно условны. Хотя, если принимать в расчёт такое понятие, как фазировка, то правильное включение дает точное представление о том, в какую сторону будет вращаться вал двигателя и не более того.

Выставляете мультиметр в режим прозвонки, один щуп прикладываете к любому из шести проводов, вторым щупом находите конец, который будет прозваниваться. И эту пару звонящихся концов маркируете. Пусть это будут U1 и U2. Остается четыре конца. Повторяете операцию и еще одну пару снова маркируете. Пусть это будут V1 и V2.

Совет

Осталась еще пара концов, их проверяете на всякий случай, чтобы быть уверенными, что обмотка в исправном состоянии и тоже маркируете оставшимися маркерами W1 и W2. Теперь у вас есть три обмотки и вы знаете их выводы. Но не знаете, где начало, а где конец каждой обмотки.

Другими словами, вы не знаете, как направлены магнитные потоки этих обмоток согласно имеющейся маркировке, поскольку она сейчас носит случайный характер.

Как определить начало и конец обмоток

Приступаем к поиску концов. Снова предупрежу о технике безопасности, поскольку сейчас вы будете работать с опасным напряжением 220 вольт. Сама процедура очень простая. Вам надо на одну обмотку присоединить лампу или вольтметр (мультиметр, в режиме измерения напряжения), а две других обмотки соединить последовательно и подать на них напряжение. Теперь рассмотрим эту процедуру подробнее.

С присоединением лампы или вольтмера проблем не возникнет. Допустим это будет обмотка W1-W2. Остается две обмотки. Согласно имеющимся маркерам вы соединяете их в таком порядке, как это показано на рисунке, а именно соединяете между собой U2 и V1.

На выводы U1 и V2 подаете ПЕРЕМЕННОЕ напряжение 220 вольт. Обратите внимание, именно переменное, поскольку постоянное превратит наш двигатель в электромагнит, но при этом напряжение в третьей обмотке наводиться не будет.

На реальном двигателе это будет выглядеть, как на фотографии ниже:

Обратите внимание, я специально выделил одним цветом (зеленым) соединенные обмотки на схеме и на фотографии. Теперь, если магнитные потоки обмоток совпадут, то в третьей обмотке будет наведено напряжение. Если посчитать грубо, то чуть меньше 100 вольт. Следовательно, лампочка на третьей обмотке начнет светиться, но не в полный накал.

Если же магнитные потоки будут направлены встречно, то в третьей обмотке напряжение наводиться не будет и лампочка не загорится. Если лампочка загорелась, все отлично, придумайте, как навсегда промаркировать выводы обмоток и приступаем к третьей. Если лампочка не загорелась, значит меняем местами выводы любой обмотки.

Пусть это будет обмотка V1V2 (то есть, если раньше была схема U1→U2→V1→V2, то теперь будет схема  U1→U2→V2→V1) и снова проверяем.

Лампочка засветилась? Отлично! Но прежде чем переходить к третьей обмотке, поскольку мы определили условные начала и концы двух обмоток нужно придумать, как навсегда промаркировать эти выводы, чтобы в дальнейшем вам не пришлось возвращаться к данной процедуре. Теперь будем работать только с третьей обмоткой. Маркеры первых двух трогать уже не будем.

Обратите внимание

К любой из найденных обмоток подключаем третью, а на освободившуюся подключаем лампочку. То есть на обмотку (пусть будет) U1U2 мы теперь подключаем вольтметр или лампочку, а соединяем обмотки V1→V2→W1→W2. И все повторяем по новой. С одним условием, что маркеры обмоток U и V мы не трогаем. Если лампочка при проверке не загорается, то меняем маркеры только на обмотке W.

Как видите, процедура не слишком сложная и при необходимой сноровке займет не больше 15 минут.

Есть и другие методы определения начал и концов обмоток, но они более сложные и требуют стрелочного вольтметра или сборки несложной схемы, хотя с другой стороны, они более безопасные.

Но этот метод наиболее простой. А если не боитесь электричества и внимательно прочитали технику безопасности, то вместо мультиметра прозванивать обмотки можно той же лампочкой.

Для этого можно использовать такую схему, которую вы видите ниже:

 То есть, можно вообще обойтись без мультиметра. Достаточно одной лампочки на 220 вольт.

На этом всё!

С наилучшими пожеланиями, Я!

Источник: http://potomstvennyjmaster.100ms.ru/rubrik-site/sovetyi/nachalo-konets-obmotki-dvigatelya.html

Перемотка трансформатора без разборки

Лежало несколько трансформаторов без дела, и один из них (советский ТСА-30-1, 30 Вт) решил использовать для универсального блока питания.

Поскольку его родные обмотки меня не устраивали (в основном по допустимому току), то решил убрать все его вторичные обмотки и намотать свои. Процесс сопровождался множеством “открытий” и ставящих в тупик вопросов, в процессе решения которых собралось много полезных деталей, которыми захотелось поделится с такими же новичками в этом деле, как и я.

В статье есть видео с подробностями некоторых этапов.

В чем мне здесь несправедливо повезло:

Время разных этапов этого видео:

26 мин 28 сек – экран из фольги между первичкой и вторичкой

27 мин 52 сек – как правильно последовательно соединить обмотки

36 мин 43 сек – как узнать направление витков при помощи батарейки и мультиметра

44 мин 14 сек – расчет и намотка новой вторичной обмотки

1 ч 24 мин 20 сек – просадка сетевого напряжения и другие потери

1 ч 30 мин 01 сек – ток холостого хода

1 ч 32 мин 14 сек – пайка алюминия

1 ч 33 мин 42 сек – итог

Рекомендую читать далее только после просмотра видеоролика. В нем намного больше важных подробностей.

Исследование модифицируемого трансформатора

Трансформатор ТСА-30-1 оказался намотан алюминиевым проводом (буква “А” как раз означает алюминий).

Информации о нем в Интернет, к счастью, было достаточно, хотя реальность не совпала с найденным на него паспортом.

По паспорту одна из обмоток должна была быть вроде бы как медной (провод ПЭВ-1, не имеет буквы “А” в названии как другие – ПЭВА), и я планировал ее не трогать, но в процессе работы оказалось, что эта обмотка тоже алюминиевая. Поэтому я ее тоже удалил. Т.е. осталась нетронутой только первичная обмотка.

Экран из алюминиевой фольги

В процессе разборки, я из любопытства отмотал немного пропарафиненной бумаги над первичной обмоткой хотел на нее посмотреть, и натолкнулся на один виток фольги, который присутствовал между первичной обмоткой и вторичной. Этот виток фольги шел внахлест вместе с бумагой, т.е.

он не замыкался, и только один из концов был отрезком медного провода соединен точечной сваркой с корпусом. Такое разделение используют в качестве экрана от помех, хотя по поводу его эффективности идут споры.

Читайте также:  Можно ли провести проводку от розетки к выключателю?

Трансформатор советский и экран был заложен на заводе изготовителе – я его трогать не стал.

Направление витков

Витки на трансформаторе были намотаны на разных катушках (левой и правой) абсолютно одинаково (не зеркально, а именно одинаково).

В дальнейшем стало понятно, что такая намотка сделана исключительно для удобства при последующем последовательном соединении обмоток с разных катушек. Видимо, по той же причине направление разных вторичных обмоток чередуется.

В этом случае перемычки между обмотками при последовательном соединении просто удобнее ставить с одной стороны.

Металлические клеммы

Клеммы этого трансформатора очень трудно паять и лудить, поскольку они судя по-всему сделаны не из меди. Медь, чем лучше ее прогреешь, тем лучше она паяется, а у стальных (?) клемм прогрев приводит к скатыванию припоя в шарик и его перетеканию с клеммы на жало паяльника. Нужно ловить один из начальных моментов прогрева, чтобы припой остался на клемме в приемлемом виде.

В исследуемом трансформаторе было тяжело вдвойне, т.к. к металлическим клеммам был припаян алюминий. Пришлось использовать для пайки ортофосфорную кислоту с последующей промывкой водой и сушкой на радиаторе.

Первичная обмотка

В этом трансформаторе две катушки, и каждая обмотка разделена на две равные части, которые намотаны на каждую из двух катушек, с последовательным соединением. Считается, что так выше КПД – равномернее нагрузка.

Первичная обмотка состоит из двух по 110v на каждой катушке, соединенных последовательно перемычкой. Кроме того к каждой из обмоток последовательно присоединена небольшая добавочная обмотка, которую я отсоединил и использовал в своих целях (превратив таким образом во вторичную). Напряжение этой добавочной пары – около 36v (при 230v в сети).

Расчет вторичной обмотки трансформатора

Главная ошибка которую я допустил – расчитывал вторичную обмотку, исходя из напряжения в сети 220v. Между тем, напряжение в сети в пиковые нагрузки может проседать до 185v, – это почти на 20% ниже положенного! Поэтому, рассчитывая вторичную обмотку, надо исходить из этого показателя – не 220, а например 180. Иначе можно сильно просчитаться.

При расчете напряжения в трансформаторе блока питания следует учитывать:

  • Минимальное напряжение в сети ~180 V
  • Падение напряжения на диодном мосту – более 2 V
  • Падение напряжения на стабилизаторе – например 3 V
  • Просадку напряжения на вторичных обмотках при увеличении тока нагрузки (умножаем в среднем на 1,02 – 1,06, в зависимости от предельного тока)

На рисунке ниже – напряжение на одном элементе диодного моста KBU801 при токе 8 A доходит до 1,08 V. Т.е. на всем мосту падение напряжения будет более 2 V (клинуть мышью для увеличения).

Для уточнения количества витков на вольт во вторичной обмотке можно сделать временную контрольную обмотку (например 10 витков) и замерять выдаваемое ею напряжение (обязательно проверить напряжение в сети!). После чего разделить эти 10 (витков) на полученное напряжение. Таким образом получим количество витков на вольт.

ВАЖНО! Необходимо делить витки контрольной обмотки на ее напряжение, а не наоборот!

Пример.

Необходимо напряжение питания 20 V при максимальном постоянном токе 2 A.

Приблизительный подсчет выглядит примерно так:

20 + 3 = 23 V (падение напряжения на стабилизаторе)

23 + 2,2 = 25,2 V (падение напряжения на диодном мосту)

25,2 / 1,41 = ~17,3 V (переводим постоянное напряжение после диодного моста с конденсатором в необходимое переменное вторички)

17,3 * 1,06 = ~18,4 V (учитываем просадку напряжения в обмотке при максимальном токе нагрузки)

Если у нас идет например 4,4 витка на вольт при идеальных ~220 V, то при напряжении ~180 V в сети, нам понадобится

18,4 * 4,4 = 81 виток (для идеального напряжения ~220 V)

81 * (220/180) = 99 витков (для пикового падения напряжения до ~180 V)

Т.е. при ~220 V в сети, вторичная обмотка, содержащая 99 витков, будет выдавать около ~22,5 V

(а при просадке в сети до ~180 V, необходимые ~18,4 V)

Намотка

Я наматывал одновременно четыре параллельных провода. В результате получил четыре обмотки на каждой катушке в каждом ряду. Такое количество обмоток дает возможность, соединяя их последовательно (или параллельно), комбинировать необходимое напряжение (и ток).

Для лабораторного блока питания, используемого как инструмент при работе, это наиболее удобный вариант.

ВАЖНО! Для трансформатора имеющего сердечник в виде буквы “О”, с двумя катушками справа и слева (такого, как рассматривается в этой статье), лучше всего каждую обмотку разделить на две (одинаковые), намотанные на разные катушки и соединенные последовательно. В этом случае будет выше КПД.

КСТАТИ при укладке на каркас, желательно слегка выгибать провод наружу перед каждым загибом на углах, чтобы витки потом не отходили в стороны от каркаса, образуя зазор при котором ухудшается плотность намотки. Я дополнительно еще придавливал провод сосновым бруском после каждого загиба на каркасе.

Расчет длины провода. Перед намоткой необходимо замерять ширину каркаса и ширину окна между каркасами катушек (или каркасом и сердечником).

После этого необходимо рассчитать длину провода, и учесть его диаметр (с лаковой изоляцией!).

Важно

Если намотка происходит без разборки сердечника, способом продевания провода в окно, то кусок/куски провода необходимой длины нужно будет “откусить” заранее, поэтому важно не ошибиться.

Если провод достаточно тонкий (например менее ᴓ 0,5 мм) и длинный, то имеет смысл сделать тонкий челнок, на который намотать провод нужной длины – так его будет легче протаскивать в окно.

У меня здесь например внутренняя длина каркаса была 54 мм, и рассчитывая уложить 52 витка провода диаметром 1мм, я не угадал – последние пол витка мне пришлось делать частично внахлест (видимо я не учел толщину лаковой изоляции).
См. рисунок (для увеличения – нажать мышью):

При расчете возможностей окна нужно учитывать суммарную толщину изоляционных прокладок из бумаги или лакоткани между обмотками.

Для точного расчета необходимой длины нужно сделать контрольный виток и замерять его длину. При этом, в каждом следующем ряду виток будет немного длиннее (скажется толщина нижнего ряда и толщина междурядной изоляционной прокладки).

Надо понимать, что например при 50 витках ошибка длины в один миллиметр на виток даст погрешность 5 см на 50 витках. Также надо учесть запас на выводы (я добавлял к общей длине кусков по 10 см с каждой стороны, т.е. всего 20 см.

– этого было достаточно и на выводы, и на возможную ошибку).

Направление витков

Я с трудом нашел информацию про направление витков обмотки, – для этого пришлось освежить школьный курс физики (правило буравчика и т.п.). Хотя этот вопрос неизбежно возникает у новичка.

Главное правило – направление витков обмотки не имеет значения… до тех пор пока возникает необходимость соединять обмотки друг с другом (последовательно или параллельно), либо в случае применения трансформатора в каких-нибудь устройствах, где важна фаза сигнала.

Не важно в каком направлении наматывать витки – важно как потом соединяются обмотки

Последовательное соединение обмоток

При последовательном соединении обмоток трансформатора, нужно мысленно представить, что одна обмотка является продолжением другой, а точка их соединения – это разрыв единой обмотки, в которой направление вращения витков вокруг сердечника сохраняется неизменным (и конечно не может разворачиваться в обратную сторону!).

При этом любой вывод обмотки может быть началом или концом, а само направление вращения может быть любым. Главное, чтобы это направление оставалось одинаковым у соединяемых обмоток.

При этом, движение соединяемых обмоток сверху вниз катушки или снизу вверх не имеет значения (см. рисунок – увеличивается кликом мыши).

Совет

В трансформаторах, у которых сердечник имеет форму буквы “О”, и катушки намотаны на двух каркасах справа и слева, действует те же правила.

Но для простоты понимания можно мысленно “разорвать” сердечник (сверху или снизу), и представить, что он выпрямляется в один стержень, – так легче будет понять, как одна обмотка переходит в другую с сохранением направления вращения витков (по или против часовой стрелки). См. рисунок ниже (рисунок увеличивается кликом мыши).

Параллельное соединение обмоток

При параллельном соединении важна длина провода в обмотках.

Даже при одинаковом количестве витков, разные обмотки могут иметь разную длину провода (та обмотка, которая ближе к середине – будет короче, а та что дальше – длиннее). В результате этого могут возникать перетоки.

Если предполагается параллельное соединение обмоток, то лучше мотать их одновременно в два (три, четыре…) провода. Тогда они будут одинаковой длины, что максимально исключит перетоки при их дальнейшем параллельном соединении.

Намотку в несколько проводов также используют при отсутствии провода нужного сечения (набирают большое сечение несколькими проводами меньшего).

Проверка направления витков при помощи батарейки и мультиметра

Если есть трансформатор, в котором нужно соединить две обмотки последовательно, но направление витков не видно и не известно, можно подать импульс постоянного тока от батарейки на одну из обмоток, наблюдая за скачком напряжения на другой обмотке.

Когда скачок напряжения в момент подключения батарейки на мультиметре (на второй обмотке) будет в “+”, то точками соединения обмоток будут любые “+” и “-” разных обмоток (например “+” мультиметра и “-” батарейки, или наоборот). Два других конца при этом будут выводами этих обмоток после соединения (см. рисунок – кликнуть мышью для увеличения).

Направление витков на разных катушках

Повторюсь – не важно направление намотки, важно подключение обмоток.

Хотя есть одно “но”. Если говорить об удобстве, то на таком типе трансформатора (с сердечником в виде буквы “О” и двумя катушками), удобнее правую и левую катушку мотать одинаково (не зеркально, а одинаково). В этом случае удобнее будет ставить перемычки при последовательном соединении двух обмоток на разных катушках – перемычки будут с одной стороны, и не через весь каркас сверху вниз.

См. рисунок (для увеличения – кликнуть мышью на рисунке):

Ток холостого хода

Если всё сделано правильно и сердечник трансформатора был собран (на заводе) качественно, то ток холостого хода (ток первичной обмотки, при полностью отключенной от нагрузки вторичной) должен быть в пределах допустимых норм.

В моем случае этот ток был 27 мА, что просто отличный показатель.

Амперметр надо включать в разрыв сетевого кабеля подключенного к первичной обмотке и, желательно соединив щупы мультиметра, включить трансформатор в сеть. После чего разъединить щупы и наблюдать показания. Соединять щупы перед включением в сеть необходимо для избежания выхода мультиметра из строя, т.к. у трансформатора может оказаться большой пусковой ток (в десятки раз выше номинального).

Источник: http://dummyluck.com/page/peremotka_transformatora

Ссылка на основную публикацию
Adblock
detector