Калькулятор для расчета катушки индуктивности

Coil32 v7.2 Программа расчета катушек индуктивности

 

Программа расчета индуктивности – Coil32″ расчет индуктивности катушки

Программа бесплатна и свободна для использования и распространения. В последней версии Coil32 v7.2 доступны:

  • Расчет числа витков катушки при заданной индуктивности
  • Расчет индуктивности катушки для заданного числа витков
  • Расчет добротности для однослойных катушек
  • Расчет индуктивности многослойной катушки по ее омическому сопротивлению
  • Расчет длины провода, необходимого для намотки многослойной катушки
  • Расчет длины провода, необходимого для намотки катушки на ферритовом кольце
  • Одиночный круглый виток
  • Однослойная виток к виткуВ качестве начальных параметров при расчете катушки можно выбрать два варианта:
    1. Известны диаметр каркаса и диаметр провода, длина намотки вычисляется.
    2. Известны диаметр каркаса и длина намотки, диаметр провода вычисляется
  • Однослойная катушка с шагом
  • Катушка с не круглой формой витков
  • Многослойная катушка В качестве начальных параметров при расчете катушки можно выбрать два варианта:
    1. Известны диаметр каркаса, длина намотки и диаметр провода. Вычисляется число витков, попутно определяется толщина катушки, ее омическое сопротивление постоянному току и приблизительная длина провода для намотки (“сколько надо отрезать”).
    2. Известны диаметр каркаса, длина намотки и предельное омическое сопротивление катушки. Вычисляется число витков, попутно определяется толщина катушки, нужный минимальный диаметр провода  и приблизительная длина провода для намотки.
  • Тороидальная однослойная катушка
  • Катушка на ферритовом кольце
  • Катушка в броневом сердечнике(Ферритовом и карбонильном)
  • Тонкопленочная катушка(Плоская катушка на печатной плате с круглой и квадратной формой витков и в виде одиночного прямого проводника)

Довольно часто перед радиолюбителем встает вопрос: “ Как рассчитать индуктивность катушки?“. Катушки используются и в высокочастотной связной аппаратуре, и при конструировании акустических систем, и даже взглянув на материнскую плату компьютера, Вы и там обнаружите индуктивные элементы. С помощью программы Coil32 можно быстро рассчитать индуктивность катушки.

В программе учитываются наиболее распространенные варианты каркасов катушек. Можно рассчитать бескаркасную катушку в виде одиночного витка, на каркасах различной формы, на ферритовых кольцах и в броневых сердечниках, а также плоскую печатную катушку с круглой и квадратной формой витков.

Для рассчитанной катушки можно “не отходя от кассы” рассчитать емкость конденсатора в колебательном контуре.

В чем преимущества программы перед аналогами?

  • Программа рассчитывает индуктивность многих типов катушек. Можно подобрать оптимальный вариант, либо пересчитать катушку под имеющийся каркас.
  • Результаты всех расчетов выводятся в текстовое поле, откуда их можно сохранить в файл. В дальнейшем Вы можете их просмотреть, чтобы не пересчитывать заново. Можно открыть этот файл в “MS Word” и распечатать.
  • Есть возможность рассчитать добротность для радиочастотных однослойных катушек индуктивности.
  • Можно расчитать длину провода для намотки многослойной катушки и на ферритовом кольце
  • Для катушек в броневых сердечниках есть возможность выбрать один из нескольких стандартных, что позволяет рассчитать катушку несколькими щелчками мыши.
  • Для плоских катушек на печатной плате программа подскажет оптимальные размеры для достижения наивысшей добротности.
  • В Сети часто встречаются программы для расчета индуктивности, работающие под DOS, о преимуществах Windows-интерфейса, думаю, говорить не приходится.
  • Программа имеет возможность расширения функционала с помощью дополнительных плагинов для расчета индуктивностей
  • Программа имеет мультиязычный интерфейс и скины, 

Программа распространяется в стиле “Portable” и не имеет установщика. Для установки программы распакуйте файл Coil32.zip в любой каталог и запустите на выполнение файл Coil32.exe.

При постоянной работе с программой, желательно создать для нее специальную папку и вынести ярлык Coil32.exe на рабочий стол.

СКАЧАТЬ программу Coil32 v7.2

Сайт программы.

Обо всех пожеланиях и замечаниях просьба писать автору программы по адресу  или на сайт программы по адресу 

Источник: http://www.ra4a.ru/load/coil32_v7_2_programma_rascheta_katushek_induktivnosti/2-1-0-2035

Бесплатная программа расчёта катушек индуктивности Coil32

 

Катушки индуктивности практически используются почти в любой радио-аппаратуре, и довольно часто перед радиолюбителями возникает вопрос: Как рассчитать индуктивность той, или иной катушки? Конечно можно рассчитать индуктивность по определённым формулам, но это требует времени, которого радиолюбителям всегда не хватает.

Бесплатная программа Coil32, автором которой является Кустарев Валерий, позволяет быстро рассчитать индуктивность практически любой катушки.

В программе учитываются наиболее распространенные варианты каркасов катушек. Можно рассчитать бескаркасную катушку в виде одиночного витка, на каркасах различной формы, на ферритовых кольцах и в броневых сердечниках, а также плоскую печатную катушку с круглой и квадратной формой витков. Для рассчитанной катушки, так же можно сразу рассчитать и ёмкость конденсатора в колебательном контуре.

Программа бесплатна и свободна для использования и распространения. В последней версии Coil32 v11.6.1.890 доступны расчёты:

  • Одиночный круглый виток
  • Однослойная виток к виткуВ качестве начальных параметров при расчете катушки можно выбрать два варианта:
    1. Известны диаметр каркаса и диаметр провода, длина намотки вычисляется.
    2. Известны диаметр каркаса и длина намотки, диаметр провода вычисляется
  • Однослойная катушка с шагом
  • Катушка с не круглой формой витков
  • Многослойная катушкаВ качестве начальных параметров при расчете катушки можно выбрать два варианта:
    1. Известны диаметр каркаса, длина намотки и диаметр провода. Вычисляется число витков, попутно определяется толщина катушки, ее омическое сопротивление постоянному току и приблизительная длина провода для намотки (“сколько надо отрезать”).
    2. Известны диаметр каркаса, длина намотки и предельное омическое сопротивление катушки. Вычисляется число витков, попутно определяется толщина катушки, нужный минимальный диаметр провода  и приблизительная длина провода для намотки.
  • Тороидальная однослойная катушка
  • Катушка на ферритовом кольце
  • Катушка в броневом сердечнике(Ферритовом и карбонильном)
  • Тонкопленочная катушка(Плоская катушка на печатной плате с круглой и квадратной формой витков и в виде одиночного прямого проводника)

Для расчета дополнительных видов индуктивности, которых нет в общем списке программы под заголовком “Выберите форму катушки” – имеется набор дополнительных плагинов “Plugins”. Список плагинов и их краткое описание отображены на рисунке ниже.

В чем преимущества данной программы перед аналогами?

  • Программа рассчитывает индуктивность различных типов катушек под имеющийся каркас.
  • Результаты расчетов выводятся в текстовое поле справа, откуда их можно сохранить в файл. Можно открыть этот файл в “MS Word” и распечатать.
  • Есть возможность рассчитать добротность для радиочастотных однослойных катушек индуктивности.
  • Можно рассчитать основные параметры колебательного контура для однослойной катушки
  • Можно рассчитать длину провода для намотки однослойной, многослойной катушки и катушки на ферритовом кольце.
  • Для расчёта катушек в броневых сердечниках, есть возможность выбора одного из нескольких стандартных сердечников, что позволяет рассчитать катушку в несколько кликов.
  • Для плоских катушек на печатной плате программа подскажет оптимальные размеры для достижения наивысшей добротности.
  • Программа имеет мультиязычный интерфейс (20 языков) и дополнительные наборы скинов, которые можно скачать и установить из меню “Настройки”.
Читайте также:  Как удлинить кабель для индукционной плиты?

Программа распространяется бесплатно в стиле “Portable” и не имеет установщика. Для работы с программой – скачайте архив, распакуйте его в любое удобное для Вас место и запустите файл Coil32.

exe. При постоянной работе с программой, желательно создать для нее специальную папку и вынести ярлык Coil32.exe на рабочий стол.

Скачать Coil32.

   

Источник: http://vprl.ru/publ/programmy/soft_dlja_radioljubitelja/besplatnaja_programma_raschjota_katushek_induktivnosti_coil32/26-1-0-158

Расчет катушки индуктивности

Главная > Теория > Расчет катушки индуктивности

Катушки индуктивности предназначены для фильтрации токов высокой частоты. Они устанавливаются в колебательных контурах и используются для других целей в электрических и электронных схемах.

Готовое устройство заводского изготовления надёжнее в работе, но дороже, чем изготовленное своими руками. Кроме того, не всегда удаётся приобрести элемент с необходимыми характеристиками.

В этом случае расчёт катушки  индуктивности и само устройство можно сделать самостоятельно.

Устройство катушки индуктивности

Конструкция катушки

Каркас устройства изготавливается из диэлектрика. Это может быть тонкий (нефольгированный) гетинакс, текстолит, а на тороидальных сердечниках –просто обмотка из лакоткани или аналогичного материала.

Обмотка выполняется из одножильного или многожильного изолированного провода.

Внутрь обмотки вставляется сердечник. Он изготавливается из железа, трансформаторной стали, феррита и других материалов. Он может быть замкнутым, тороидальным (бублик), квадратным или незамкнутым (стержень). Выбор материала зависит от условий работы: частоты, магнитного потока и других параметров.

Кроме того, есть приборы, в которых сердечник отсутствует. Они характеризуются большой линейностью импеданса, но при намотке тороидальной формы обладают паразитной ёмкостью.

Расчет параметров катушки индуктивности

Протекающий по проводу электрический ток создаёт вокруг него электромагнитное поле. Соотношение величины поля к силе тока называется индуктивностью. Если провод свернуть кольцом или намотать на каркас, то получится катушка индуктивности. Её параметры рассчитывают по определённым формулам.

Расчёт индуктивности прямого провода

Индуктивность прямого стержня – 1-2мкГн на метр. Она зависит от его диаметра. Точнее можно рассчитать по формуле:

L=0.2l(logl/d-1), где:

  • d – диаметр провода,
  • l – длина провода.

Эти величины нужно измерять в метрах (м). При этом результат будет иметь размерность микрогенри (мкГн). Вместо натурального логарифма ln допустимо использовать десятичный lg, который в 2,3 раза меньше.

Предположим, что какая-то деталь подключена проводами длиной 4 см и диаметром 0,4 мм. Произведя при помощи калькулятора расчет по выше приведённой формуле, получаем, что индуктивность каждого из этих проводов составит (округлённо) 0,03 мкГн, а двух – 0,06 мкГн.

Ёмкость монтажа составляет порядка 4,5пФ. При этом резонансная частота получившегося контура составит 300 МГц. Это диапазон УКВ.

Важно! Поэтому при монтаже устройств, работающих в частотах УКВ, длину выводов деталей нужно делать минимальной.

Расчёт однослойной намотки

Для увеличения индуктивности провод сворачивается кольцом. Величина магнитного потока внутри кольца выше примерно в три раза. Рассчитать её можно при помощи следующего выражения:

L = 0,27D(ln8D/d-2), где D – диаметр кольца, измеренный в метрах.

При увеличении количества витков индуктивность продолжает расти. При этом индукция отдельных витков влияет на соседние, поэтому получившиеся параметры пропорциональны не количеству витков N, а их квадрату.

Однослойная намотка

Дроссель с сердечником

Параметры обмотки, намотанной на каркас, диаметром намного меньше длины рассчитывается по формуле:

L=*0*N2*S.

Она справедлива для устройства большой длины или большого тора.

Размерность в ней дана в метрах (м) и генри (Гн). Здесь:

  • 0 = 4•10-7 Гн/м – магнитная константа,
  • S = D2/4 – площадь поперечного сечения обмотки, магнитная проницаемость магнитопровода, которая меньше проницаемости самого материала и учитывает длину сердечника; в разомкнутой конструкции она намного меньше, чем у материала.

Например, если стержень антенны изготовить из феррита с проницаемостью 600 (марки 600НН), то у получившегося изделия она будет равна 150. При отсутствии магнитного сердечника = 1.

Для того чтобы использовать это выражение для расчёта обмоток, намотанных на тороидальном сердечнике, его необходимо измерять по средней линии «бублика». При расчёте обмоток, намотанных на железе Ш-образной формы без воздушного зазора, длину пути магнитного потока измеряют по средней линии сердечника.

Катушка с Ш-образным сердечником

В расчёте диаметр провода не учитывается, поэтому в низкочастотных конструкциях сечение провода выбирается по таблицам, исходя из допустимого нагрева проводника.

Обратите внимание

В высокочастотных устройствах, так же как и в остальных, стремятся свести омическое сопротивление к минимуму для достижения максимальной добротности прибора. Простое повышение сечения провода не помогает.

Это приводит к необходимости наматывать обмотку в несколько слоёв. Но ток ВЧ идёт преимущественно по поверхности, что приводит к увеличению сопротивления.

Добротность в высокочастотных элементах растёт вместе с увеличением всех размеров: длины и диаметров обмотки и провода.

Максимальная добротность получается в короткой обмотке большого диаметра, с соотношением диаметр/длина, равным 2,5. Параметры такого устройства вычисляются по формуле:

L=0.08D2N2/(3D+9b+10c).

В этой формуле все параметры измеряются в сантиметрах (см), а результат получается в микрогенри (мкГн).

По этой формуле рассчитывается также плоская катушка. Диаметр «D» измеряется по среднему витку, а длина «l» по ширине:

l=Dmax-Dmin.

Плоская катушка

Многослойная намотка

Многослойная намотка без сердечника вычисляется по формуле:

L=0.08D2N2/(3D+9b+10c).

Размеры здесь измеряются в сантиметрах (см), а результат получается в микрогенри (мкГн).

Добротность такого устройства зависит от способа намотки:

  • обычная плотная намотка – самая плохая, не более 30-50;
  • внавал и универсал;
  • «сотовая».

Многослойная катушка

Для увеличения добротности при частоте до 10 мГц вместо обычного, одножильного провода, можно взять литцендрат или посеребренный проводник.

Справка. Литцендрат – это провод, скрученный из большого количества тонких изолированных друг от друга жил.

Литцендрат имеет большую поверхность, по сравнению с одножильным проводником того же сечения, поэтому на высоких частотах его сопротивление ниже.

Важно

Использование сердечника в высокочастотных устройствах повышает индуктивность и добротность катушки. Особенно большой эффект даёт использование замкнутых сердечников. При этом добротность дросселя зависит не от активного сопротивления провода, а от проницаемости магнитопровода. Рассчитывается такой прибор по обычным формулам для низкочастотных устройств.

Сделать катушку или дроссель можно самостоятельно. Перед тем, как её изготавливать, необходимо рассчитать индуктивность катушки по формулам или при помощи онлайн-калькулятора.

Видео

Источник: https://elquanta.ru/teoriya/raschet-katushki-induktivnosti.html

Расчёт однослойной катушки на 1/4 волны с учётом ёмкости заземления

Подробно

Поделиться

Сохранить в аккаунт

Для того, чтобы поделиться созданным вами проектом, нужно скопировать ссылку и вставить её в блог, форум или другой сайт:

Этот калькулятор создан на базе исследований однослойных катушек индуктивности на 1/4 длину волны. На их основе внесены коррективы в расчёт индуктивности и собственной ёмкости катушки. Предполагается, что на её нижнюю часть надет индуктор, на который подаются импульсы или периодический сигнал (на рисунке не показан).

Читайте также:  Какой автомат нужен для трехфазного двигателя, ток которого 15а?

Калькулятор может расчитывать параметры для нескольких режимов работы.

1. Внешняя ёмкость отсутствует. В этом случае в калькулятор необходимо ввести минимум три верхних параметра и он в реальном времени подсчитает выходные параметры.

2. Внешняя ёмкость: тор. Здесь нужно выбрать тип внешней ёмкости — тор, и подставить его данные. Предполагается, что тор находится в максимуме напряжения и подключается к верхнему выводу катушки. Это классический расчёт трансфоматора Тесла.

3. Внешняя ёмкость: конденсатор. В этом случае нужно выбрать тип внешней ёмкости — конденсатор, и подставить значение его ёмкости. Предполагается, конденсатор подключается параллельно выводам катушки.

4. Ёмкость заземления. Этот калькулятор отличается наличием этого важного параметра. Когда он больше нуля, то эта ёмкость включается в общий расчёт. Предполагается, что заземление подключается к нижнему выводу катушки.

Определить значение ёмкости заземления можно в нижнем разделе калькулятора. Для этого нужно провести всего два измерения резонансной частоты для реальной катушки: первое — без заземления, второе – с заземлением.

Совет

Подставив эти два значения и известную индуктивность мы получим ёмкость земли для данной катушки, в вашей местности. Обычно, эта величина находится в пределах нескольких пикофарад.

Эта ёмкость позволяет точнее определить выходные параметры.

Данный калькулятор предполагает, что резонанс ищется только в режиме четверти длины волны. Контролировать этот режим можно с помощью достаточно простых методов описанных здесь.

Отдельно, нужно сказать о «коэффициент скорости распостранения волны». Этот параметр находится, как отношение скорости распостранения волны в катушке, к световой скорости.

При некоторых условиях он может быть более единицы.

Шаг намотки. С помощью этого параметра вы можете рассчитать диапазон возможных значений для диаметра намоточного провода. Максимально возможный — равен шагу намотки, минимальный — его половине. Например, если этот шаг равен 3 мм, то диаметр провода может быть от 1.5 мм (наматывается с зазором), до 3 мм (наматывается виток к витку).

Сохранение данных

Этот калькулятор может сохранять полученные вычисления в ваш аккаунт. Для этого вы должны быть зарегистрированы на этом сайте. Вы можете сохранить результат вычисления, который здесь называется словом «проект», нажав на кнопку «Сохранить в аккаунт», а затем полностью восстановить данные из раздела «Мои проекты».

Высота намотки должна быть больше её диаметра!

Частота “без заземления” должна быть больше частоты “с заземлением”!

Ошибка соединения с сервером. Попробуйте отправить запрос позже!

Данные, принятые от сервера, имеют неправильный формат. Обратитесь к администратору!

Пожалуйста, авторизуйтесь!

Пожалуйста, продлите абонемент!

Процесс вычисления вышел за допустимые процессором рамки: 10 в степени 200. Пожалуйста, измените параметры!

Пожалуйста, авторизуйтесь!

Пожалуйста, продлите абонемент!

Введите название или номер своего проекта

Проект не сохранён!

Данные успешно сохранены

Проект с такими параметрами уже был сохранён в течение последнего часа. Выберите другие параметры!

Источник: http://Gorchilin.com/calculator/coil14

Конвертер величин

На рисунке выше показана однослойная катушка индуктивности: Dc — диаметр катушки, D — диаметр оправки или каркаса катушки, p — шаг намотки катушки, d — диаметр провода без изоляции и di — диаметр провода с изоляцией

Для расчета индуктивности LS применяется приведенная ниже формула из статьи Р. Уивера (R. Weaver) Численные методы расчета индуктивности:

Здесь

D — диаметр оправки или каркаса катушки в см,

l — длина катушки в см,

N — число витков и

L — индуктивность в мкГн.

Эта формула справедлива только для соленоида, намотанного плоским проводом. Это означает, что катушка намотана очень тонкой лентой без зазора между соседними витками. Она является хорошим приближением для катушек с большим количеством витков, намотанных проводом круглого сечения с минимальным зазором между витками.

Американский физик Эдвард Беннетт Роса (Edward Bennett Rosa, 1873–1921) работавший в Национального бюро стандартов США (NBS, сейчас называется Национальное бюро стандартов и технологий (NIST) разработал так называемые корректирующие коэффициенты для приведенной выше формулы в форме (см. формула 10.1 в статье Дэвида Найта, David W.

Knight):

Здесь LS — индуктивность плоской спирали, описанная выше, и

Обратите внимание

где ks — безразмерный корректирующий коэффициент, учитывающий разницу между самоиндукцией витка из круглого провода и витка из плоской ленты; km — безразмерный корректирующий коэффициент, учитывающий разницу в полной взаимоиндукции витков из круглого провода по сравнению с витками из плоской ленты; Dc — диаметр катушки в см, измеренный между центрами проводов и N — число витков.

Величина коэффициента Роса km определяется по формуле 10.18 в упомянутой выше статье Дэвида Найта:

Коэффициент Роса ks, учитывающий различие в самоиндукции, определяется по формуле 10.4 в статье Д. Найта:

Здесь p — шаг намотки (расстояние между витками, измеренное по центрам проводов) и d — диаметр провода. Отметим, что отношение p/d всегда больше единицы, так как толщина изоляции провода конечна, а минимально возможное расстояние между двумя соседними витками с очень тонкой изоляцией, расположенными без зазора, равна диаметру провода d.

На индуктивность катушки влияют несколько факторов.

  • Количество витков. Катушка с большим количеством витков имеет бóльшую индуктивность по сравнению с катушкой с меньшим количеством витков.
  • Длина намотки. Две катушки с одинаковым количеством витков, но разной длиной намотки имеют разную индуктивность. Более длинная катушка имеет меньшую индуктивность. Это связано с тем, что магнитное поле менее компактной катушки более слабое и оно не может хорошо концентрироваться в растянутой катушке.
  • Диаметр катушки. Две плотно намотанные катушки с одинаковым количеством витков и разными диаметрами имеют разную индуктивность. Катушка с бóльшим диаметром имеет бóльшую индуктивность.
  • Сердечник. Для увеличения индуктивности в катушку часто вставляется сердечник из материала с высокой магнитной проницаемостью. Сердечники с более высокой магнитной проницаемостью позволяют получить более высокую индуктивность. Сердечники, изготовленные из магнитной керамики — феррита, часто используются в катушках и трансформаторах различных электронных устройств, так как у них очень низкие потери на вихревые токи.

Упрощенная эквивалентная схема реальной катушки индуктивности: Rw — сопротивление обмотки и ее выводов; L — индуктивность идеальной катушки; Rl — сопротивление вследствие потерь в сердечнике; и Cw — паразитная емкость катушки и ее выводов.

В этом калькуляторе мы рассматривали идеальную катушку индуктивности. В то же время, в реальной жизни таких катушке не бывает. Катушки обычно конструируются с минимальными размерами таким образом, чтобы они помещались в миниатюрное устройство.

Любую реальную катушку индуктивности можно представить в виде идеальной индуктивности, к которой параллельно подключены емкость и сопротивление, а еще одно сопротивление подключено последовательно. Параллельное сопротивление учитывает потери на гистерезис и вихревые токи в магнитном сердечнике.

Это параллельное сопротивление зависит от материала сердечника, рабочей частоты и магнитного потока в сердечнике.

Паразитная емкость появляется в связи с тем, что витки катушки находятся близко друг к другу. Любые два витка провода можно рассмотреть как две обкладки маленького конденсатора. Витки разделяются изолятором, таким как воздух, изоляционный лак, лента или иной изоляционный материал.

Читайте также:  Основные причины возникновения короткого замыкания

Относительная диэлектрическая проницаемость материалов, используемых для изоляции, увеличивает емкость обмотки. Чем выше эта проницаемость, тем выше емкость. В некоторых случаях дополнительная емкость может появиться также между катушкой и противовесом, если катушка расположена над ним.

Важно

На высоких частотах реактивное сопротивление паразитной емкости может быть весьма высоким и игнорировать его нельзя. Для уменьшения паразитной емкости используются различные методы намотки катушек.

Для уменьшения паразитной емкости катушки с высокой добротностью для радиопередатчиков наматывают так, чтобы было достаточно большое расстояние между витками

Если индуктивность большая, то сопротивление обмотки (Rw на схеме) игнорировать уже нельзя. Тем не менее, оно мало по сравнению с реактивным сопротивлением больших катушке на высоких частотах. Однако, на низких частотах и на постоянном токе это сопротивление необходимо учитывать, так как в этих условиях через катушку могут протекать значительные токи.

Катушки индуктивности и обмотки в различных устройствах

Источник: https://www.translatorscafe.com/unit-converter/ru/calculator/coil-inductance/

Расчет индукторов, дросселей, катушек индуктивности методом численного моделирования FEM

Расчет индукторов, дросселей, катушек индуктивности методом численного моделирования FEM.

Современный подход к разработке сложной электронной и электротехнической продукции предполагает точное проектирование силовых элементов схемы. С ростом мощностей разрабатываемого оборудования, цена ошибок и неточностей в расчетах растет в геометрической прогрессии. А особенно это становится заметно, когда разрабатывается уникальное оборудование.

Безусловно, существует масса литературы по расчету и проектированию трансформаторов, дросселей, катушек индуктивности с сердечником и без сердечника, где рассмотрены большинство стандартных применений.

Для студентов, которые только начинают заниматься электроникой и электротехникой, я всегда рекомендовал замечательную книгу –

Семенов Б.Ю. Силовая электроника: от простого к сложному. 2005г.

Ясное и понятное изложение для начинающих.

Далее, по расчету катушек индуктивности, есть не менее полезная книга-

Калантаров П.Л., Цейтлин Л.А. Расчет индуктивностей. 1986г.

По расчету трансформаторов напряжения (тока) и дросселей существует масса литературы.

Приводить их нет смысла. Интернет велик. Все можно найти.

Особняком стоят книги по расчету, разработке и конструированию индукторов для технологий индукционного нагрева.

Тут Слухоцкого А.Е. вне конкуренции. Хотя, в последнее время, появилось достаточно много статей и книг, где подробно и более глубоко рассмотрены проблемы проектирования индукторов для конкретных видов технологий индукционного нагрева ТВЧ.

Для простейших случаев существует множество on-line калькуляторов, которые позволяют прикинуть или даже рассчитать простые варианты катушек индуктивности, дросселей, трансформаторов.

Например, очень хорошая программа Coil32. Сайт – http://coil32.narod.ru/

Позволяет определить основные параметры катушек индуктивности различной формы.

Для простейшего расчета трансформаторов, например, калькулятор радиолюбителя.

Сайт – http://www.radioamcalc.narod.ru/

Но все это расчеты для устройств, в лучшем случае, до 1кВт.

Совет

Дальше начинается своя специфика. Особенно если эти устройства работают на частотах выше нескольких десяток кГц.

В мощных высокочастотных дросселях, катушках индуктивности, индукторах, трансформаторах существенно возрастают потери от поверхностных эффектов протекания тока. Высокочастотный ток может легко концентрироваться и перегревать локальные участки силового устройства.

На высокой частоте существенно возрастает сложность точного расчета потерь мощности в магнитопроводе и обмоточном проводе или шинах. Существенно увеличивается влияние на потери многослойность катушки. Учет влияния зазора в магнитопроводе также становится достаточно сложной задачей.

Использование программ численного моделирования FEM позволяет решить большинство технических вопросов, возникающих при расчете и проектировании индукторов, дросселей, катушек индуктивности, трансформаторов, шиносборок и т.

д., а также существенно повысить точность расчета и провести оптимизацию проектируемого устройства в кратчайшие сроки во многих случаях без создания натурального макета, что особенно важно для мощных и дорогих устройств.

Несколько слов хотел сказать о индукционных водонагревателях.

Индукционные водонагреватели, индукционные котлы, индукционные парогенераторы – это технически сложные устройства, требующие особенно тщательной проработки и проектирования индукционной системы. В качестве источника питания обычно используется промышленная частота 50Гц с напряжением 220В или 380В. 

Основной проблемой при проектировании индукционных водонагревателей является оптимальное конфигурировании индуцирующей обмотки. Т. е. проектирование геометрии обмотки, числа витков, сечения провода.

Необходимо учитывать, что индукционная система имеет cosφ существенно отличный от 1.

 Поэтому, без установки дополнительного конденсатора, параллельно обмотки, от сети будет потребляться дополнительный реактивный ток. 

Обратите внимание

Выбор и расчет требуемого компенсирующего конденсатора является обязательным требованием для получения максимального КПД водонагревательного устройства. Также многие путают электрический и тепловой КПД нагревательного устройства. Тепловой КПД для таких устройств действительно может составлять почти 100%.

Принцип работы индукционного котла показан на рисунках:

Одной из лучших программ FEM моделирования электротехнических устройств является программа Jmag-Designer. Сайт – http://www.jmag-international.com/

Несколько примеров расчетов и моделирования индукторв для разных технологий:

1. Расчет и моделирование индукционной системы тигель-индуктор-магнитопровод.

Определение параметров индукционной системы, КПД, распределение тока в индукторе, определение потерь в магнитопроводе.

2. Расчет и моделирование процесса нагрева шестерни в индукторе под закалку.

Решалась совместная электромагнитная и тепловая задача.

В результате моделирования были определены параметры индукционной системы, КПД, требуемая мощность, частота и время нагрева под закалку.

3. Ресчет и моделирование нагрева шейки коленчатого вала под закалку.

Решалась электромагнитная и тепловая задача в 3D с вращением нагреваемой детали (коленчатого вала).

В результате моделирования определены параметры индукционной системы, КПД, требуемая мощность и время нагрева под закалку.

4. Еще один вариант расчета и моделирования шейки коленчатого вала под закалку.

Вращение детали присутствует.

Несколько примеров расчетов катушек индуктивности и трансформаторов:

– Трансформатор тока.

Частота около 100кГц. Сердечник феррит 2500НМС1. Обмотка задана, как FEM Coil с распределенными витками по геометрии заданной области.

Задается в параметрах число витков и общее сопротивление обмотки.

Моделировалось распределение тока в медной шине и магнитной индукциии в магнитопроводе. Проверялось отсутствие насыщения магнитопровода для различных режимов работы трансформатора тока. Оптимизировалассь конструкция трансформатора тока для ВЧ применений.

– Расчет и моделирование трехфазного трансформатора с кожухом.

Важно

На рисунке справа показана расчетная схема и схема включения обмоток и нагрузки трансформатора.

Определялся КПД трансформатра (потери в обмотках, сердечнике, кожухе) и рассеяние в различных режимах работы.  

– Расчет, моделирование и анализ потерь в трансформаторе с плоскими обмотками.

Оценивалось распределение потерь в сердечнике и обмотках трансформатора.

Источник: http://inductor-jmag.ru/raschet_induktorov

Ссылка на основную публикацию
Adblock
detector