Для чего нужны дополнительные контакты на контакторе?

Дополнительные контакты для пускателей

  1. Виды магнитных пускателей
  2. Устройство магнитных пускателей
  3. Принцип работы
  4. Монтаж и подключение
  5. Уход за магнитным пускателем
  6. Видео

На заре электротехники коммутация трехфазных электродвигателей осуществлялась с помощью ручных рубильников.

Они не обеспечивали в должной мере электробезопасность и требовали соединения с пультом управления с помощью силовых линий. Дальнейшее развитие коммутационных процессов привело к изобретению магнитного пускателя, лишенного недостатков обычного рубильника.

Обратите внимание

Данное устройство дало возможность дистанционного включения нагрузки и автоматического управления рабочими процессами оборудования.

Сам магнитный пускатель имеет довольно простое устройство и принцип работы. Он состоит из двух видов контактов – подвижных и стационарных. Их замыкание вызывает запуск электродвигателя, а размыкание – отключение и остановку. Работа контактов осуществляется под действием магнитного поля.

Виды магнитных пускателей

Основным предназначением магнитных пускателей является дистанционное управление трехфазными асинхронными электродвигателями с короткозамкнутым ротором. Они работают при переменном токе, напряжением 380 и 660 вольт, с частотой 50 Гц. В число основных операций входят пуск, остановка и реверсирование.

Дополнительно, магнитные пускатели в совокупности с тепловыми реле, защищают управляемые электродвигатели от возможных перегрузок с недопустимой продолжительностью. В некоторых конструкциях пускателей имеются ограничители перенапряжений, используемые в полупроводниковых системах управления.

В соответствии со схемой включения нагрузки могут быть реверсивными и нереверсивными. Классификация по размещению предполагает магнитные пускатели следующих типов:

  • Открытого исполнения. Устанавливаются в закрытых шкафах, на панелях, и прочих местах, куда не может попасть пыль, влага и посторонние предметы.
  • Защищенного исполнения. Монтируются внутри помещений с низким содержанием пыли в окружающей среде. Исключается попадание воды на оболочку устройства.
  • Пылебрызгонепроницаемого исполнения. Устанавливаются внутри помещений и снаружи под навесами, защищающими от дождя и солнечных лучей.

Дополнительная классификация пускателей осуществляется по следующим признакам:

  • Кнопочный пост на корпусе прибора. Нереверсивные пускатели оборудованы кнопками ПУСК и СТОП, а реверсивные устройства имеют кнопки ПУСК ВПЕРЕД, ПУСК НАЗАД и СТОП. На некоторых моделях в корпусе монтируется сигнальная лампа ВКЛЮЧЕНО.
  • Дополнительные блокировочные и сигнальные контакты. Используются в разных комбинациях, в качестве замыкающих или размыкающих. Они могут быть встроенными или оборудоваться как отдельная приставка. Некоторые дополнительные контакты могут использоваться в качестве составной части общей схемы пускателя. Например, в реверсивных устройствах с их помощью осуществляется электрическая блокировка.
  • Ток и напряжение втягивающей катушки.
  • Наличие в схеме теплового реле. Его основной характеристикой является номинальный ток несрабатывания на средних установках. Регулировка тока несрабатывания выполняется в допустимых пределах + 15% от номинала.

Отдельные виды магнитных пускателей могут быть укомплектованы ограничителями перенапряжения и другими видами установочных изделий

Устройство магнитного пускателя

Конструкция магнитного пускателя условно разделяется на верхнюю и нижнюю части. Вверху располагается подвижная система контактов совместно с дугогасительной камерой. Здесь же находится и подвижная половинка электромагнита, имеющая механическую связь с силовыми контактами, входящими в подвижную контактную систему.

В нижней части устройства расположена катушка, возвратная пружина и вторая часть электромагнита. Основной функцией возвратной пружины является возврат верхней половинки в исходное положение после того как прекращается подача питания на катушку. Таким образом, происходит разрыв силовых контактов пускателя.

В конструкцию обеих половинок электромагнита входят Ш-образные пластины, для изготовления которых использована электромагнитная сталь.

В качестве обмотки применяется медный провод с определенным количеством витков, рассчитанных на работу с определенным питающим напряжением, значением 24, 36, 110, 220 и 380 В. Подача напряжения приводит к появлению в катушке магнитного поля.

В результате, обе половинки стремятся соединиться, что приводит к образованию замкнутого контура. При отключении питания, магнитное поле исчезает, и верхняя часть возвращается в исходное положение под действием возвратной пружины.

Принцип работы

Принцип действия магнитного пускателя заложен уже в его названии. Он срабатывает как электромагнит, когда электрический ток проходит по обмотке катушки. После срабатывания силовых контактов, происходит запуск электродвигателя.

Общая конструкция устройства включает в себя основную часть, закрепленную стационарно и подвижный якорь, передвигающийся по направляющим. В самом упрощенном виде пускатель является единой кнопкой, корпус которой оборудован клеммами для подключения силовых цепей и стационарных контактов.

Подвижная часть оборудована контактным мостиком, обеспечивающим двойной разрыв силовой цепи, чтобы отключить питание нагрузки.

Кроме того, эта деталь предназначена для надежного электрического соединения проводов входа и выхода, когда схема включается в работу. Проверить работу системы можно вручную. Для этого нужно надавить на якорь и ощутить усилие от сжатия пружин.

Важно

Именно это усилие должно преодолеваться магнитным полем. Когда якорь отпускается, контакты отбрасываются пружинами в отключенное положение.

В процессе работы такое ручное управление не применяется, оно необходимо только для проверок. Фактически используется только дистанционная коммутация под действием электромагнитного поля. Само поле возникает в катушке под влиянием электротока, проходящего через ее витки. Прохождение тока значительно улучшается за счет шихтованного стального магнитопровода, разделенного на две части.

При отсутствии электрического тока, магнитное поле вокруг катушки тоже исчезает. Это приводит к отбрасыванию якоря вверх за счет энергии пружин. Когда ток вновь начинает проходить по обмотке, возникают магнитные силы, обеспечивающие движение якоря вниз.

Нижнее положение якоря оказывает влияние на работу всего устройства. В этом положении контакты должны надежно соединяться между собой. В случае ослабления возможно подгорание контактов, чрезмерный нагрев и последующее отгорание проводов.

Монтаж и подключение электромагнитного пускателя

Для обеспечения дальнейшей надежной работы магнитных пускателей, монтаж этих устройств рекомендуется выполнять на ровной поверхности, закрепленной жестко, в вертикальном положении. Установка пускателей с тепловыми реле должна производиться в условиях минимальной разности температур окружающего воздуха.

Неправильная установка может привести к ложным срабатываниям. Поэтому следует избегать мест, подверженных вибрации, сильным толчкам и ударам. Например, электромагнитные устройства с номинальным током свыше 150 А во время включения создают заметные сотрясения и удары.

Тепловые реле могут подвергаться дополнительному нагреву от других источников тепла. Это оказывает отрицательное влияние на всю работу данных устройств. Поэтому их нельзя размещать рядом с аппаратурой теплового действия или в тех частях шкафов, которые более всего подвержены нагреву.

Когда с контактным зажимом пускателя соединяется один проводник, его конец загибается в кольцо или П-образно. Такой способ соединения предотвращает перекос пружинных шайб, установленных в зажиме. Если же к зажиму подключаются сразу два проводника с примерно одинаковым сечением, их концы должны иметь прямую форму и располагаться по обеим сторонам от зажимного винта.

До того, как подключать медные провода, их концы необходимо залудить. В многожильных проводах концы перед лужением предварительно скручиваются. Концы проводов из алюминия зачищаются мелким надфилем, после чего покрываются техническим вазелином или специальной пастой. Смазка контактов и подвижных частей устройства не допускается.

Перед пуском необходимо осмотреть магнитный пускатель снаружи и проверить исправность всех его частей. Все подвижные элементы должны свободно двигаться от руки. Сверить все электрические соединения со схемой.

Уход за магнитным пускателем

Для того чтобы правильно ухаживать за магнитным пускателем, необходимо хорошо знать возможные неисправности этого устройства. Как правило, это повышенная температура деталей и сильное гудение прибора.

Повышенная температура в первую очередь связана с межвитковыми замыканиями катушки. В подобных случаях требуется ее замена. Кроме того, излишний нагрев может произойти в связи с повышением напряжения сети выше номинального, а также при перегрузках, слабых контактных соединениях и недопустимом износе контактов.

Чрезмерное гудение устройства может происходить по целому ряду причин. Среди них в первую очередь следует отметить неплотное прилегание якоря к сердечнику, в результате загрязнения поверхностей или их повреждения. Другой серьезной причиной становится заедание подвижных частей, а также снижение напряжения в сети более чем на 15% от номинала.

Совет

Для того чтобы избежать подобных неисправностей, требуется своевременный уход. В целом, магнитный пускатель не требует каких-либо дорогостоящих мероприятий.

Прежде всего, нужно не допускать попадания внутрь прибора грязи, пыли и влаги. Нужно регулярно проверять состояние контактов и плотность зажимов.

Существует определенный перечень мероприятий по техническому обслуживанию и ремонту, выполняемый специалистами-электротехниками.

Как работает магнитный пускатель?

Первым делом рассмотрим устройство магнитного пускателя. На самом деле конструкция не сложная и включает в себя подвижную и неподвижную часть. Чтобы информация была более понятной, рассмотрим конструкцию аппарата, опираясь на модель серии ПМЕ:

Конструкция аппарата ПМЕ

  1. Контактные пружины, которые обеспечивают плавное замыкание контактов при включении пускателя, а также создают необходимое усилие нажатия.
  2. Контактные мостики.
  3. Контактные пластины.
  4. Пластмассовая траверса.
  5. Якорь.
  6. Обмотка.
  7. Ш-образная часть сердечника (неподвижная)
  8. Дополнительные контакты.

Помимо этого устройство магнитного пускателя может включать в себя амортизаторы, назначение которых – смягчить удар во время пуска аппарата. В серии ПМ12 амортизаторы обозначены цифрой 8, но более понятно они показаны на второй картинке – конструкции магнитного пускателя ПАЕ-311 (обозначение «10»).

Мы рассказали, из чего состоит магнитный пускатель, однако вряд ли это дало Вам что-либо понять, особенно если Ваш уровень знаний «чайник в электрике». Чтобы все стало на свои места, далее мы рассмотрим принцип работы аппарата.

Схема работы

Принцип действия магнитного пускателя не сложный – при включении питания кнопкой «Пуск», электрический ток проходит по катушке и намагничивает подвижный якорь. Как результат – якорь притягивается к неподвижной части и происходит замыкание главных контактов.

Ток протекает по цепи и происходит включение электродвигателя. Если питание выключить, электрический ток пропадет с катушки и произойдет ее размагничивание. Этот процесс повлечет за собой задействование контактной пружины, которая вернет якорь в исходное положение.

Главные контакты разомкнутся и цепь будет полностью обесточена.

Обращаем Ваше внимание на то, что мгновенное размыкание контактов произойдет не только, после намеренного отключения питания, но и если напряжение в сети упадет больше, чем на 60% от номинального значения.

Теперь Вы знаете, как работает магнитный пускатель. Как видно, схема работы устройства довольно простая. Наглядно увидеть принцип действия Вы можете на видео примерах ниже.

Наглядная работа аппарата

Подробное объяснение от специалиста

Область применения

Ну и последний из главных вопросов статьи – для чего нужен магнитный пускатель (на фото ниже предоставлен его внешний вид). Как мы уже сказали ранее, назначение этого аппарата – замыкание и размыкание цепи, которой характерные большие токи.

Как правило, пускатели используют для дистанционного управления электродвигателями, работающими от напряжения 220 либо 380 Вольт.

В домашних условиях применение данных аппаратов возможно для создания системы уличного освещения либо включения мощных потребителей электроэнергии.

Вот мы и рассмотрели устройство магнитного пускателя, его принцип действия и назначение. Надеемся, что информация была для Вас интересной и полезной. Если вдруг у Вас возникли какие-либо вопросы, задавайте их в комментариях либо специальной категории – «Вопрос электрику »!

Наглядная работа аппарата

Читайте также:  Что лучше выбрать: ударную дрель или перфоратор

Подробное объяснение от специалиста

Магнитный пускатель

Магнитный пускатель — электромеханическое устройство представляющее собой нормально разомкнутый блок контактов, который под воздействием электрической катушки, при подаче на нее напряжения, замыкается.

Магнитный пускатель может быть укомплектован тепловым реле, которое размыкает контакты при нагреве проводов более установленной величины.

Возможна установка дополнительного блока контактов (нормально замкнутый + нормально разомкнутый.

Магнитные пускатели выпускаются согласно ГОСТ Р 50030.4.1-2002 (МЭК 60947-4-1-2000) Аппаратура распределения и управления низковольтная. Часть 4-1. Контакторы и пускатели. Электромеханические контакторы и пускатели ГОСТ 2491—82 «Пускатели электромагнитные низковольтные. Общие технические условия»

Обратите внимание

Магнитные пускатели изготавливаются нескольких габаритов- 1,2,3 и т.д. Чем больше габарит магнитного пускателя,тем более мощные электрические устройства можно с помощью него коммутировать. Выпускаются магнитные пускатели серий ПМЛ, ПМЕ, ПА и ПМА.Магнитные пускатели крепятся в электрических щитках или на дин-рейку или с помощью болтов.

Если вам необходимо установить или заменить магнитный пускатель, то вы можете воспользоваться услугой вызов электрика

Назначение магнитного пускателя

Магнитный пускатель предназначены для подключения электродвигателей, управления направлением вращения электродвигателей, коммутации электрических устройств, защиты электрических цепей и устройств от повреждений при перегрузке.

Устройство магнитного пускателя

Магнитный пускатель состоит из корпуса, электромагнитной катушки, блока контактов, пружины а также опционно тепловым реле и дополнительном блоком контактов.

Катушка магнитного пускателя

Электромагнитная катушка предназначена для замыкания блока контактов магнитного пускателя. Катушки отличаются размерами и напряжением,на которое они рассчитаны.

При подаче напряжения на контакты катушки сердечник, который закреплен на подвижной части блока контактов, и проходящий внутри катушки под действием электро движущей силы сдвигается, что замыкает контакты.

После снятия напряжения с контактов катушки подвижный блок контактов под действием пружины возвращается в исходное положение и блок контактов размыкается.

Катушки работают при напряжениях 380, 220, 12, 36 и 42 V. При подключении обязательно надо проверить соответствие маркировки напряжения на катушке и фактического напряжения.

Дополнительный блок контактов магнитного пускателя

Дополнительный блок контактов нужен для расширения возможностей по коммутации электромагнитного пускателя. Дополнительный блог контактов выполняется в варианте нормально замкнутый контакт + нормально разомкнутый контакт или 2 нормально замкнутых контакта + 2 нормально разомкнутых.

Тепловое реле магнитного пускателя

Тепловое реле защищает электрические устройства от перегрузки путем контроля температуры электрических жил. В случае перегрузки жилы нагреваются, тепловое реле это контролирует и размыкает цепь.

Сблокированный магнитный пускатель. Реверсивный магнитный пускатель

Одним из основных применений магнитных пускателей является управление направлением вращения ротора электродвигателя, для чего два магнитных пускателя блокируется между собой.

Иногда применяется также механическая блокировка, которая предохраняет в случае аварии или неправильного подключения магнитного пускателя от одновременного включения магнитного пускателя, что приводит к короткому замыканию.

Схема подключения сблокированного (реверсивного) пускателя

Источники: http://electric-220.ru/news/magnitnyj_puskatel_ustrojstvo_i_princip_raboty/2016-11-12-1114, http://samelectrik.ru/kak-rabotaet-magnitnyj-puskatel.html, http://1-jbi.ru/magnitnyj-puskatel/

Источник: http://electricremont.ru/dopolnitelnye-kontakty-dlya-puskatelej.html

Назначение, устройство и работа магнитного пускателя

Здравствуйте, уважаемые читатели сайта sesaga.ru. С этой статьи мы начнем изучение магнитного пускателя и все, что с ним связано, а идею этой темы подсказал постоянный читатель сайта Сергей Кр.

Магнитный пускатель является коммутационным аппаратом и относится к семейству электромагнитных контакторов, позволяющий коммутировать мощные нагрузки постоянного и переменного тока, и предназначен для частых включений и отключений силовых электрических цепей.

Магнитные пускатели применяются в основном для пуска, останова и реверсирования трехфазных асинхронных электродвигателей, однако, из-за своей неприхотливости они прекрасно работают в схемах дистанционного управления освещением, в схемах управления компрессорами, насосами, кран-балками, тепловыми печами, кондиционерами, ленточными конвейерами и т.д. Одним словом, у магнитного пускателя обширная область применения.

Как таковой магнитный пускатель уже трудно встретить в магазинах, так как их практически вытеснили контакторы.

Причем по своим конструктивным и техническим характеристикам современный контактор ничем не отличается от магнитного пускателя, а различить их можно только по названию.

Важно

Поэтому, когда будете приобретать в магазине пускатель, обязательно уточняйте, что это — магнитный пускатель или контактор.

Мы рассмотрим устройство и работу магнитного пускателя на примере контактора типа КМИ – контактор малогабаритный переменного тока общепромышленного применения.

Принцип работы магнитного пускателя

Принцип работы очень простой: напряжение питания подается на катушку пускателя, в катушке возникает магнитное поле, за счет которого вовнутрь катушки втягивается металлический сердечник, к которому закреплена группа силовых (рабочих) контактов, контакты замыкаются, и через них начинает течь электрический ток. Управление магнитным пускателем осуществляется кнопками «Пуск», «Стоп», «Вперед» и «Назад».

Устройство магнитного пускателя

Магнитный пускатель состоит из двух частей: сам пускатель и блок контактов.

Хотя блок контактов и не является основной частью магнитного пускателя и не всегда он используется, но если пускатель работает в схеме где должны быть задействованы дополнительные контакты этого пускателя, например, реверс электродвигателя, сигнализация работы пускателя или включение дополнительного оборудования пускателем, то для размножения контактов, как раз, и служит блок контактов или, как его еще называют — приставка контактная.

Блок контактов или приставка контактная

Внутри блока контактов (приставки контактной) встроена подвижная контактная система, которая жестко связывается с контактной системой магнитного пускателя и стает с ним как бы одним целым. Крепится приставка в верхней части пускателя, где для этого предусмотрены специальные полозья с зацепами.

Контактная система приставки состоит из двух пар нормально замкнутых и двух пар нормально разомкнутых контактов.

Чтобы идти дальше давайте сразу разберемся: что есть нормально замкнутый и нормально разомкнутый контакты. На рисунке ниже схематично показана кнопка с парой контактов под номерами 1-2 и 3-4, которые закреплены на вертикальной оси. В правой части рисунка показано графическое изображение этих контактов, используемое на электрических принципиальных схемах.

Нормально разомкнутый (NO) контакт в нерабочем состоянии всегда разомкнут, то есть, не замкнут. На рисунке он обозначен парой 1–2, и чтобы через него прошел ток контакт необходимо замкнуть.

Нормально замкнутый (NC) контакт в нерабочем состоянии всегда замкнут и через него может проходить ток. На рисунке такой контакт обозначен парой 3–4, и чтобы прекратить прохождение тока через него, надо контакт разомкнуть.

Теперь, если нажать кнопку, то нормально разомкнутый контакт 1-2 замкнется, а нормально замкнутый 3-4 разомкнется. О чем показывает рисунок ниже.

Вернемся к блоку контактов.

В исходном состоянии, когда магнитный пускатель обесточен, нормально разомкнутые контакты 53NO–54NO и 83NO–84NO разомкнуты, а нормально замкнутые 61NC–62NC и 71NC–72NC замкнуты. Об этом говорит шильдик с номерами клемм контактов, расположенный на боковой стенке блока контактов, а стрелка показывает направление движения контактной группы.

Теперь, если на катушку пускателя подать напряжение питания, то сердечник потянет за собой контакты блока контактов и нормально разомкнутые замкнутся, а нормально замкнутые разомкнутся.

Фиксируется блок контактов на пускателе специальной защелкой. А чтобы блок снять, достаточно приподнять защелку и выдвигать блок в сторону защелки.

Магнитный пускатель

Магнитный пускатель состоит как бы из верхней и нижней части.

В верхней части находится подвижная контактная система, дугогасительная камера и подвижная половинка электромагнита, которая механически связана с группой силовых контактов подвижной контактной системы.

Нижняя часть пускателя состоит из катушки, возвратной пружины и второй половинки электромагнита. Возвратная пружина возвращает верхнюю половинку в исходное положение после прекращения подачи питания на катушку, тем самым, разрывая силовые контакты пускателя.

Обе половинки электромагнита набраны из Ш-образных пластин, сделанных из электромагнитной стали. Это наглядно видно, если вытащить нижнюю половинку электромагнита.

Совет

Катушка пускателя намотана медным проводом, и содержит N-ое количество витков, рассчитанное на подключение определенного питающего напряжения равного 24, 36, 110, 220 или 380 Вольт.

Ну и как происходит сам процесс.
При подаче напряжения питания в катушке возникает магнитное поле и обе половинки стремятся соединиться, образуя замкнутый контур. Как только отключаем питание, магнитное поле пропадает, и верхняя часть возвращается возвратной пружиной в исходное положение.

Теперь осталось разобраться с питанием и характеристиками.
На боковой стенке пускателя, так же, как и у блока контактов, нанесена информация об электрических параметрах пускателя и для удобства условно разделена на три сектора:

Сектор №1

В первом секторе дана общая информация о пускателе и его область применения:

50Гц – номинальная частота переменного тока, при которой возможна бесперебойная работа пускателя;

Категория применения АС-3 – двигатели с короткозамкнутым ротором: пуск, отключение без предварительной остановки.
Например: этот пускатель можно использовать для запуска и останова асинхронных двигателей с короткозамкнутым ротором, используемых в лифтах, эскалаторах, ленточных конвейерах, элеваторах, компрессорах, насосах, кондиционерах и т.д.

Для характеристики коммутационной способности контакторов и пускателей переменного тока установлены четыре категории применения, являющиеся стандартными: АС1, АС2, АС3, АС4. Каждая категория применения характеризуется значениями токов, напряжений, коэффициентов мощности или постоянных времени, условиями испытаний и других параметров установленных ГОСТ Р 50030.4.1-2002.

Iе 9А – номинальный рабочий ток. Это ток нагрузки, который в нормальном режиме работы может проходить через силовые контакты пускателя. В нашем примере этот ток составляет 9 Ампер.

Категория применения АС-1 – неиндуктивные или слабо индуктивные нагрузки, печи, сопротивления. Например: лампы накаливания, ТЭНы.

Ith 25A – условный тепловой ток (t° ≤ 40°). Это максимальный ток, который контактор или пускатель может проводить в 8-часовом режиме так, чтобы превышение температуры его различных частей не выходило за пределы 40°С.

Сектор №2

В этом секторе указана номинальная мощность нагрузки, которую могут коммутировать силовые контакты пускателя, и которая характеризуется категорией применения АС3 и измеряется в кВт (киловатт). Например, через контакты пускателя можно пропустить нагрузку мощностью 2,2 кВт, питающуюся переменным напряжением не более 230 Вольт.

Сектор №3

Здесь показана электрическая схема пускателя: катушка и четыре пары нормально разомкнутых контактов – три силовых (рабочих) и один вспомогательный. От катушки через все контакты проходит пунктирная линия, которая указывает, что все четыре контакта замыкаются и размыкаются одновременно.

Напряжение питания 220В подается на катушку через контакты, обозначенные как А1 и А2.

Современные магнитные пускатели выпускают с двумя однотипными контактами от одного вывода катушки.

Их выводят с противоположных сторон, маркируют одинаковым буквенным и цифровым значением, и соединяют между собой проволочной перемычкой. В нашем случае это выводы с маркировкой А2.

Все это сделано для удобства монтажа схемы. И если придется собирать схемы с участием магнитного пускателя, используйте оба эти контакта.

Читайте также:  Почему дифавтомат averes dva-6 не включается после нажатия кнопки сброса?

Теперь осталось рассмотреть контактную группу пускателя. Здесь все просто.
Силовыми контактами являются три пары: 1L1–2T1; 3L2–4T2; 5L3–6T3 — к ним подключается нагрузка, которую Вы хотите запитывать через магнитный пускатель или контактор.

Причем контакты 1L1; 3L2; 5L3 являются входящими – к ним подводится напряжение питания, а 2Т1; 4Т2; 6Т3 являются выходящими – к ним подключается нагрузка.

Обратите внимание

Хотя разницы здесь нет — что куда, но это считается за правило, чтобы можно было разобраться в монтаже другому человеку, не производившему монтаж.

Последняя пара контактов 13НО–14НО является вспомогательной и эту пару используют для реализации в схеме самоподхвата пускателя. То есть, эта пара нужна, чтобы при включении в работу, например, двигателя, все время его работы не пришлось держать нажатой кнопку «Пуск». О самоподхвате мы поговорим в следующей части.

Ну и последнее, на что хотел обратить Ваше внимание, это на то, что современные пускатели, автоматические выключатели и УЗО теперь можно размещать в одном ящике и на одну дин рейку. Так что учитывайте это при выборе ящика.

Теперь я думаю Вам понятно назначение, устройство и работа магнитного пускателя, а во второй части мы рассмотрим схемы подключения магнитного пускателя. А пока досвидания.

Удачи!

Источник: https://sesaga.ru/naznachenie-ustrojstvo-i-rabota-magnitnogo-puskatelya.html

Модульные контакторы. Виды и применение. Типы и работа

Для коммутации некоторых электрических приспособлений применяют коммутационные механизмы, работающие с помощью электромагнитного привода и дистанционного управления. Эти компактные электрические приборы называются модульные контакторы (МК).

Модульные контакторы назначение

МК являются электрическими аппаратами, используемыми для связки переменного либо постоянного тока.

МК устанавливают на динрейку и в зависимости от модели его можно дополнить какими-либо необходимыми аксессуарами.

Так как в функции этих приборов не входит защита электроцепи от короткого замыкания или перегрузки, то её надлежит модернизировать, оборудовав плавкими предохранителями либо автоматическими выключателями.

Благодаря достаточно гибкой конструкции МК, их можно изменять, внедряя контакторные приставки, датчики времени, тепловым реле, блокировочные устройства и прочее оборудования управляющее электрическими проводниками. К примеру, при использовании пуска электродвигателей, цепь оснащают теплореле. С помощью реле выполняется отменная защита двигателя от перегрузки.

Основные составляющие контактора:

  • Полюс. Эта часть прибора осуществляет замыкание и размыкание тока в цепи. Обеспечивает беспрерывную работу без опасного повышения температурных границ. Полюс имеет подвижную часть, на которой располагается пружина, и неподвижные контакты, которые принимают давление пружины. Элемент покрыт серебряным напылением для увеличения срока службы и механической прочности.
  • Катушка. Этот элемент создаёт электромагнитное поле. Именно в нём осуществляет свои движения подвижная часть прибора, благодаря чему происходит замыкание электрической цепи.
  • Дополнительные контакторы. Эта группа элементов предназначена для индикации состояния МК, блокирования контактов, а также самоблокировки и взаимной блокировки. Контактная система оснащена выдержкой времени. Контакты бывают разных модификаций: • нормально открытые; • нормально закрытые;• перекидные контакты.

Важные составляющие узлы:

  • Электромагнитный механизм.
  • Дугогасительная система.
  • Контактная система.
  • Система вспомогательных контактов (блок-контактов).

Принцип работы МК

Работа МК базируется на замыкании (под действием магнитного поля) рабочих контактов.

Работа построена следующим образом:

  • Напряжение на катушку прибора подаётся сразу после его включения.
  • Чем больше насыщается катушка напряжением, тем сильнее прижимается магнитный якорь к сердечнику.
  • Контакты начинают размыкаться либо замыкаться в зависимости от начального состояния аппарата.
  • Вспомогательные контакты включают реверсивный ход и управляют катушкой.
  • Система гашения дуги выполняет функции токоограничителя при скачках напряжения и внезапном обрывании электрической цепи.

Использование модульных контакторов

МК широко применяют в домашней электропроводке. Их можно использовать для создания автоматического включения (выключения) электрических конвекторов в квартире либо доме при достижении указанной температуры в помещении. Это осуществляется посредством того, что на цепь питания электрообогревателей контакторы подают напряжение после того, как получают сигнал от реле температуры.

С помощью МК выполняется схема автоматического регулирования системой кондиционирования, осветительными устройствами, насосом скважины и пр. системами. Модульными контакторами обеспечивают автоматическое включение резерва (АВР) электроснабжения частного дома и квартиры.

С МК можно собирать традиционную и реверсивную схему регулирования электродвигателей. Традиционная схема представляет управление запуском и остановкой двигателя, а путём реверсивной изменяют направление вращения двигателя.

Добавочные контактные пары в МК разрешают эксплуатировать эти устройства вместе с другими приборами. Это позволяет наладить подачу сигнала из одного контактора на другой. Также благодаря контактным парам собирается схема сигнализации режима работы МК.

Чаще всего МК применяют для управления, а также коммутации разнообразных приводов и устройств (вентиляционного, обогревательного, осветительного и др.).

Классификация модульных контакторов

Существует целое изобилие модульных контакторов, которые различают по типу работы, техническим характеристикам, области использования, износостойкости, количеству полюсов, силе тока и прочих нюансах конструктивного исполнения.

По типу работы можно выделяют механические и электромагнитные приборы. Ныне большой популярностью пользуются электромагнитные МК.

Они преобладают положительными моментами над прочими коммутационными устройствами, благодаря чему широко применяются в быту.

Важно

К достоинствам электромагнитных аппаратов относится их бесшумность в работе, устойчивость к сильным вибрациям. Причём сами приборы не создают вибрации при переключении режимов.

Модульные контакторы бывают однофазные и двухфазные, ещё могут иметь от 1 до 4 полюсов. Поэтому выделяют одно-, двух-, трёх-, четырехполюсные контакторы. Приборы также различают по наличию дополнительных контактов. Ведь некоторые модели контакторов имеют вспомогательные контакты, а другие нет. Отличия есть и по роду тока, при этом выделяют МК постоянного и переменного тока.

Модульные контакторы предназначенные для коммутации цепи постоянного тока выпускаются в основном одно- и двухполюсные на силу тока 80-630 А и на максимальное напряжение равное 440 В.

Трехполюсные приборы с током от 63 до 1000 А и замыкающими главными контактами используются для цепей переменного тока.

Отличием этих двух контакторов является наличие дребезга контактов в устройствах переменного тока при включении, что вызывает сильный износ контактов. Это явный изъян данного типа аппаратов.

МК состоят из контактной системы и дугогасительной. Дугогасительная система представляет своеобразный ограничитель при разрыве электрической цепи.

Существует два основных типа МК, отличающихся способом разрыва сети:

  • Одинарные. Этот тип модульных приборов содержит электромагнитное устройство, которое эффективно осуществляет гашение дуги. Это МК постоянного тока, они предназначенные для сложных работ. Активно применяются в индукционных печах и железнодорожном оборудовании.
  • Сдвоенные. Этот тип МК эксплуатируется в тяжёлых условиях работ. Отличается от одинарных устройств — двойным разрывом дуги.

Типы модульных контакторов

Существуют следующие типы контакторов, которые имеют явные отличия:

  • Пускатель. Эти приборы считаются улучшенным типом контакторов, содержат следующие элементы: • вспомогательная контактная группа; • тепловое реле;• автоматическую систему для пуска электродвигателя.
  • Автоматическая система бывает разных видов: • реверсивная; • нереверсивная; • с переключением обмоток;• без переключения обмоток.
  • Магнитный пускатель. Этот прибор представляет трёхполюсный контактор переменного тока. Оборудован МК двумя тепловыми реле, усовершенствующих защитную функцию.
  • Магнитный контактор. Двухпозиционный аппарат для частых выключений и включений при нормальных режимах силовых цепей.
  • Промежуточное реле. Это маломощный МК, увеличивающий в слаботочных цепях число контактов. Он рассчитан на огромное количество коммутаций.

Разные заводы-производители выпускают различные типы МК, которые отличаются конструктивными особенностями и назначением. Торговые марки определяют свой тип электромагнитным устройствам.

Популярные модульные контакторы выпускаются фирмой АВВ для автоматизации оборудования зданий.

В силовых цепях и цепях управления контакторы серии МТ и МF, распространены небольшие устройства для дистанционного управления КМЭ.

Совет

В больничных, офисных, промышленных, а также в жилых помещениях часто эксплуатируются модульные контакторы серии КМ.

Каждая фирма-производитель пользуется своей структурой обозначения приборов. Единства в маркировке МК нет, хотя между собой они не много похожи.

 

К примеру, прибор фирмы IEK (КМ хх х х АС/DC, где х — число) КМ20-20 АС:

  • КМ – контактор модульный.
  • 20 – номинальный ток.
  • 2 замыкающихся контактов.
  • размыкающихся контактов.
  • АС – род тока катушки.

Пример маркировки МК переменного тока серии КТ

Плюсы и минусы модульных контакторов

МК способны решить широкий спектр задач. Они удобны и быстрые в монтаже. А установленные схемы управления с помощью МК занимают мало места в распределительном щитке.

Этот положительный момент обусловлен компактным конструктивным исполнением модульных электрических аппаратов.

А благодаря их бесшумности, комфорт в помещении не будет нарушен, если аппарат установить прямо в квартирном щитке.

Также модульные контакторы имеют хорошую электробезопасность (2 класса), это говорит о безопасности для малоквалифицированных пользователей и профессионалов. Плюсом является ещё то, что МК можно подключать к любой сети и эксплуатировать при больших мощностях.

В основном модульные контакторы в день могут выполнять до 100 коммутационных операций, это явление можно отнести к недостаткам этих приборов.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/modulnye-kontaktory/

Модульный контактор: для чего он нужен, особенности подключения

Добрый день, друзья. Сегодня я попробую обычными словами, понятными для каждого человека, объяснить, что такое контактор и каково его предназначение. Наиболее частое используемое предназначение контактора — это коммутация электрических сетей.

Контактор, как правило, помимо силовых, оснащён ещё несколькими парами контактов: замкнутой и разомкнутой. Это позволяет регулировать напряжение и при сильном скачке энергии отключать подачу электричества, чтобы избежать перегрева оборудования и кабелей.

О том, как правильно использовать контактор по технике безопасности, а также основные его различия с реле или магнитным пускателем, Вы узнаете далее в статье. Приятного чтения.

Зачем нужен модульный контактор в щитке? Использование в электрике

Любую электрическую цепь рано или поздно приходится размыкать. Причины для этого могут быть разными, а вот способов не так уж и много. Классический рубильник отлично справляется с поставленной задачей, но когда делать это приходится часто, об удобстве такого способа можно забыть.

Контактор гораздо лучше подходит для выполнения подобной задачи. Во-первых, он способен смыкать и размыкать электрическую цепь по несколько тысяч раз в час. Во-вторых, делать это он позволяет на расстоянии, т. Ну, и самое главное, контактор способен полностью автоматизировать весь этот процесс.

Чем отличается контактор от магнитного пускателя

Как уже было сказано, основным назначением контактора является частое или просто регулярное включение и отключение электрических цепей.

Некоторые зачастую просто путают контактор и магнитный пускатель, хотя принципиальная разница между ними есть. Магнитный пускатель является разновидностью контакторов, служащей одной конкретной цели — он запускает двигатели переменного тока.

Обратите внимание

Еще одна полезная разновидность контакторов — это тепловое защитное реле. Его назначением является защита электродвигателей от возможного перегрева.

Читайте также:  Как сделать металлоискатель из подручных средств?

Таковым может быть обрыв одной из фаз или какие-либо другие причины. Тепловое защитное реле пропускает электрический ток только в охлажденном состоянии, а в случае нагрева биметаллической пластины цепь разрывается. При этом нужно помнить, что тепловое защитное реле срабатывает с задержкой во времени, поэтому не может служить защитой от токов короткого замыкания.

Номинальный рабочий ток рабочего контактора

Работа любого контактора заключается в следующем: группа подвижных контактов смыкается и размыкается с неподвижными контактами, тем самым, пропуская или не пропуская электрический ток. То есть по принципу работы это классический переключатель, хотя у него есть и ряд своих особенностей. Во-первых, в целях безопасности нормальное положение контактов — разомкнутое.

Никаких механических средств для удержания контактов во включенном положении просто не существует. Подается управляющее напряжение — контакты смыкаются, напряжения нет — подвижные контакты автоматически размыкают цепь.

Во-вторых, к такому виду переключателей, как контактор, предъявляются высокие требования в плане механической стойкости и электрической безопасности.

Отсюда и наличие дополнительных элементов в конструкции, о которых речь пойдет ниже.

Конструкция

Разумеется, основой является контактная система, представляющая собой две группы — подвижных и неподвижных контактов. Сюда же можно приписать вспомогательные контакты, отвечающие за систему управления и сигнализации. Вторым важным элементом контактора является электромагнитная система, состоящая из катушки с сердечником. Таким образом контактор отличается от обычного реле.

В общем-то, это и есть элемент дистанционного управления, поскольку именно сюда подаются управляющие токи. Не менее важным элементом конструкции являются дугогасительные камеры, которыми оснащены силовые контакты.

Именно дугогасительная система при размыкании контактов гасит возникающую электрическую дугу.

Важно

Все это делает контактор не просто двухпозиционным аппаратом, а надежным, безотказным и долговечным электромеханическим устройством.

Источник: https://chint-electric.ru/kontaktor

В чём разница между реле и контактором?

Модульный контактор представляет собой электрически управляемый переключатель, используемый для переключения цепи питания, аналогичный реле, за исключением более высоких номинальных токов.

Электромагнит (или «катушка») обеспечивает движущую силу для закрытия контактов. Корпус представляет собой раму, снабженную контактом и электромагнитом.

Корпуса выполнены из изоляционных материалов, таких как бакелит, нейлон 6 и термореактивные пластмассы, для защиты и изоляции контактов и обеспечения некоторой меры защиты от персонала, касающегося контактов.

Контакторы с открытой рамой могут иметь дополнительный корпус для защиты от пыли, масла, взрывоопасности и погоды.

  1. дугогасительная система
  2. контактная система
  3. основание
  4. магнитная система

В магнитных выбросах используются выдувные катушки для удлинения и перемещения электрической дуги.

Иногда также используется схема экономайзера для снижения мощности, необходимой для закрытия контактора; вспомогательный контакт уменьшает ток катушки после закрытия контактора. Требуется несколько больший объем мощности для первоначального закрытия контактора, чем требуется для его закрытия.

Базовый контактор в щитке будет иметь вход катушки (который может управляться либо источником переменного тока, либо постоянным током в зависимости от конструкции контактора).

Катушка может быть под напряжением при том же напряжении, что и двигатель, которым управляет контактор, или может управляться отдельно с более низким напряжением катушки, более подходящим для управления программируемыми контроллерами и пилотными устройствами низкого напряжения.

Совет

Зачем это нужно? Некоторые контакторы имеют последовательные катушки, соединенные в цепи двигателя; они используются, например, для автоматического управления ускорением, когда следующий этап сопротивления не отключается до тех пор, пока ток двигателя не упадет.

Источник: https://euroec.deal.by/a46721-chto-takoe-kontaktor.html

Что такое контактор?

Контакторами называются воздушные выключатели, применяемые для управления (автоматического и дистанционного) в НВА переменного тока (с напряжением до 600 В) и НВА постоянного (до 300 В).

Более подробная информация:

  • КОНТАКТОРЫ КВ1
  • КОНТАКТОРЫ КТ-6000
  • КОНТАКТОРЫ ЭЛЕКТРОМАГНИТНЫЕ КТП – 121 Е У2

Схема работы контактора переменного тока следующая.

Магнитопровод контактора состоит из «сердечника», неподвижно смонтированного на плите и подвижного якоря, закрепленного на оси. Сердечник и якорь изготавливаются из спецстали. На сердечнике имеется втягивающая катушка.

Если цель управления размыкается, якорь падает под собственным весом и усилия пружин контактов, ось поворачивается вправо и контакты разъединяются.

Электрическая дуга, которая образуется в процессе размыкания контактов, гасится в специальной дугогасящей камере.

Источник: https://www.mplus.by/chto-takoe-kontaktor/

Что такое и для чего нужен включающий контактор?

Контактор представляет собой электрическое устройство, предназначением которого является отсоединение/подключение силовых цепей.

Классификация контакторов

Все устройства означенного типа могут быть разделены на несколько категории по следующим критериям:

  • вид электрического тока (переменный или постоянный);
  • по количеству имеющихся полюсов;
  • по величине номинального тока;
  • по наличию в конструктиве контактора дополнительных контактов.

Электромагнитные контакторы могут применятся в различных климатических условиях. В частности, контакторы ТКС одобрены РосСтандартом к применению даже при отрицательных температурах.

Пускатель, реле и контактор — какова разница

Помимо главных и вспомогательных контактов, устройство состоит из дугогасительной и магнитной системы.

Сами контакты могут быть выполнены в различных исполнениях:

С помощью электромагнитной системы может быть реализовано удалённое управление контактором. Кроме того, система может осуществлять работу в двух режимах: удержание якоря либо включение якоря без последующего удержания (в этом случае используется специальная защёлка).

При длительном использовании контакторов переменного тока может появиться характерный дребезг. Означенная проблема приводит к быстрому износу электрического аппарата. Дребезжание контактов должно быть устранено немедленно.

Опытный электрик наглядно продемонстрирует электрические контакторы, а также возможные схемы его включения в силовую сеть:

Источник: http://euroelectrica.ru/chto-takoe-i-dlya-chego-nuzhen-vklyuchayushhiy-kontaktor/

Техническая эксплуатация электромагнитных контакторов

После установки контактора перед включением его в сеть нужно удалить смазку с рабочих поверхностей якоря и сердечника незапятанной ветошью, смоченной в бензине, и проверить соответствие напряжения главной цепи и цепи управления по табличным данным. Проверяется также соответствие проекту типа и номинальных данных контактора, целость всех электронных соединений.

В критериях эксплуатации электрических контакторов нужно часто смотреть за состоянием контакторов. Основными параметрами контактного устройства являются раствор контактов, провал контактов и нажатие на контактах. Потомуони подлежат неотклонимой повторяющейся проверке, регулировке и настройке.

До того как приступить к осмотру контактора, его нужно отключить от сети. Все гайки должны быть затянуты, контакторы (узлы и детали) очищены от пыли, грязищи, копоти и коррозии, контакты протерты сухой тряпкой, а при наличии нагара — тряпкой, смоченной бензином.

Обратите внимание

Контакты всегда должны быть сухими, смазка поверхностей не допускается, потому что от дуги она выгорает и продуктами горения загрязняет контактные поверхности, вследствие чего возрастает нагрев контактов и создаются условия для их приваривания.

После обработки ратфилем контакты следует протереть незапятанной ветошью. Полировка контактных поверхностей не требуется, потому что дает более высочайшее контактное сопротивление, чем обработка ратфилем.

Серебряные контакты не обрабатываются ратфилем, а при обгорании протираются замшей. Если серебряная накладка износится ив месте касания контактов появится медь, таковой контакт нужно поменять.

При включенииконтактора контакты должны касаться поначалу верхними, а потом нижними частями, равномерно перекатываясь с малозначительным скольжением, что поддерживает их поверхность в неплохом состоянии. При выключении процесс должен происходить в оборотной последовательности.

Контакты при включении должны замыкаться верно, без подпрыгивания (дребезжания).Легкость хода контактора проверяется включением от руки (при снятом напряжении). Все заедания должны быть устранены. Контактор должен верно врубаться без ступеней и приметных замедлений.

Нужно инспектировать исправность механической блокировки, которая не должна мешать свободному и полному включению 1-го из сблокированныхконтакторов (неполное включение контактора тянет за собой перегрев контактов и катушки, которая может сгореть).

Подмена основных контактов контактора после их износа

После установки новых контактов нужно отрегулировать их положение так, чтоб соприкасание было по полосы, суммарная длина которой равнялась более 75% ширины подвижного контакта. Смещение контактов по ширине допустимо до 1 мм.

Источник: http://elektrica.info/tehnicheskaya-e-kspluatatsiya-e-lektromagnitny-h-kontaktorov/

Из чего может состоять контактор?

Контакторы постоянного тока используют для коммутации цепи постоянного тока, в отличие от пускателей. Контакторы работают на основе электромагнита постоянного тока.

Основные требования, предъявляемые к контакторам постоянного тока:

  • Возможность длительной работы при высокой частоте отключений.
  • Устойчивость к механическому износу.
  • Высокая отключающая и включающая способность.
  • Технологичная конструкция.
  • Небольшой вес и компактные габариты.
  • Коммутационная износостойкость должна быть, с учетом отключений пусковых токов, около 3 млн. циклов.

Помимо стационарного режима, для контакторов постоянного тока существуют также еще и режим редких коммутаций. Этот режим характеризуется более неблагоприятными условиями, чем при режиме с нормальной коммутацией.

Основной технической характеристикой контакторов постоянного тока является значение номинального тока главных контактов, номинальное напряжение коммутируемой цепи, максимально возможное количество включений в час, значение предельного отключаемого тока, коммутационная и механическая износостойкость и собственное время отключения и включения контактора.

Коммутационная износостойкость контакторов определяется числом отключений-включений цепи, после которого требуется заменить контакты.

Категории применения современных контакторов.

ДС – 1 Для малоиндуктивной или активной нагрузки.
ДС – 2 Для пуска электродвигателей постоянного тока с параллельным возбуждением, а также их отключения при достижении номинальной частоте вращения.
ДС – 3 Для пуска электродвигателей с параллельным возбуждением, а также их отключения в случае медленного вращения ротора или вовсе его остановки.
ДС – 4 Для пуска электродвигателей с последовательным возбуждением, а также их отключения при номинальной частоте вращения.
ДС – 5 Для пуска электродвигателей с последовательным возбуждением. Также выполняет функцию отключения медленно вращающихся или неподвижных двигателей, тормозя их противотоком.

При номинальном токе 100 А – это 0,14 с, а при значении номинальной силы тока 630 А – это 0,37 с. А собственное время отключения же контактора – это время, которое проходит с момента обесточивания магнита и до момента разъединения его контактов.

Номинальный ток контактора постоянного тока – это такое его значение, которое можно пропускать по главным замкнутым контактам, без коммутации, в течении 8 часов. Причем при этом, различные части контактора не должны нагреваться до температуры больше допустимой.

Вспомогательные контакты призваны коммутировать цепи электромагнитов, работающих от переменного тока, в которых значение пускового тока, иногда, очень на много превышает установившийся ток.

Основные узлы контактора постоянного тока:

  • Контактная система.
  • Электромагнит.
  • Система вспомогательных контактов.
  • Дугогасительное устройство.

Когда напряжение подается на обмотку электромагнита, якорь начинает притягиваться. При этом, связанный с якорем электромагнита контакт, замыкает либо размыкает электрическую цепь.

Для того чтобы контакты служили как можно дольше используют дугогасительное устройство. Оно быстро гасит дугу, и износ контактов уменьшается. А для согласования работы других устройств с самим контактором постоянного тока используется система вспомогательных контактов.

Магнитопровод контактора во включенном положении находится под напряжением. Однако даже после его отключения, ток может все еще оставаться в магнитопроводе или других частях контактора.

Источник: http://myfta.ru/articles/kontaktory-postoyannogo-toka

Источник: http://prorabkin.com/electro/kontaktor

Ссылка на основную публикацию
Adblock
detector