Что такое межфазное короткое замыкание

Межфазное замыкание и способы борьбы с ним

Межфазное замыкание является аварийным режимом работы электрической сети. Оно возникает при электрическом соединении между разноименными фазами при ухудшении изоляции между ними, механических повреждениях или ошибках при эксплуатации.

Кроме межфазных замыканий различают однофазные замыкания, происходящие когда соединяются между собой ноль и фаза. Соединение фазного проводника с землей называется замыканием на землю.

Замыкания происходят в электроустановках, имеющих как заземленную нейтраль, когда нулевой проводник связан с контуром заземления, так и изолированную, где он изолирован от земли на всем протяжении. Они могут возникнуть между двумя фазами, тремя фазами с нулем или без него.

Замыкания могут возникать в любом месте электрической сети. Им подвержены:

  • опорные и проходные изоляторы, на которых устанавливаются токопроводящие шины;
  • обмотки электрических машин: силовых трансформаторов, электродвигателей и генераторов;
  • силовые кабельные линии;
  • воздушные линии электропередач;
  • изолирующие элементы коммутационной аппаратуры: выключатели, разъединители, рубильники, колодки предохранителей, автоматические выключатели;
  • потребители электрической энергии, например, электронагреватели, конденсаторные установки.

В различных ситуациях замыкания протекают по-разному. Различают:

  • «металлические» замыкания, при которых соединение проводников двух фаз имеет малое сопротивление, исключающее образование дуги и искр;
  • замыкание через дугу, образующееся в случае наличия между замкнутыми проводниками воздушного зазора;
  • «тлеющее» замыкание, характерное для кабельных линий, загрязненных изоляционных поверхностей, когда ток между фазами идет через участок с небольшим сопротивлением, разогревая его;
  • замыкание в полупроводниковых элементах при их пробое.

Для защиты от междуфазных замыканий в электроустановках 380/220 В применяются:

  • автоматические выключатели с электромагнитным расцепителем (автоматы);
  • плавкие предохранители.

Для защиты электроустановок с напряжением более 1000 В применяется комплекс устройств, называемый релейной защитой. Он включает в себя датчики тока (трансформаторы тока), напряжения (трансформаторы напряжения), реле защиты и управляемые силовые коммутационные элементы.

Реле защиты бывают электромеханическими, полупроводниковыми или микропроцессорными. Задача коммутационного элемента (масляного, вакуумного или элегазового выключателя) – обеспечить отключение поврежденного участка по команде от устройства защиты.

При этом он должен выдержать отключение тока короткого замыкания.

Токи межфазного замыкания

Важной электрической характеристикой короткого замыкания является его ток. При проектировании электроустановок его обязательно рассчитывают по определенной методике для нескольких точек.

Делается это для того, чтобы правильно выбрать параметры электрооборудования и установки защитных устройств: токи отсечки автоматических выключателей и характеристики срабатывания релейной защиты.

На величину тока короткого замыкания (КЗ) оказывают влияние следующие факторы:

  1. Расстояние от точки замыкания до источников электроэнергии. Чем ближе замыкание от мощных трансформаторов, генераторов, тем ток замыкания больше;
  2. Вид, сечение и протяженность соединительных кабельных и воздушных линий, соединяющих источник питания с точкой КЗ. Количество и характеристики коммутационных аппаратов в этой цепи и их техническое состояние. При расчете все эти данные преобразуют в эквивалентное сопротивление сети. Зная мощность источника электроэнергии, рассчитывают ток КЗ;
  3. Вид межфазного замыкания: при металлическом замыкании ток наибольший, его и рассчитывают при проектировании. При дуговом замыкании ток меньше. Но если дуга неустойчива и постоянно то гаснет, то загорается вновь, возникают переходные процессы, приводящие к кратковременному превышению расчетных токов.

При «тлеющем» замыкании ток намного ниже расчетного, что делает невозможным реакцию защитных устройств на его появление.

Тлеющее замыкание может внезапно перейти в дуговое или металлическое, сработает защита, но при повторном включении ток снова окажется за порогом чувствительности.

Поиск места повреждения электрооборудования в данном случае затруднен и без измерения изоляции или испытаний повышенным напряжением невозможен.

Итак, чем дальше замыкание происходит от источника питания, тем меньше величина его тока. Объясняется это тем, что каждый кабель, распределительный щиток или воздушная линия увеличивают величину эквивалентного сопротивления электрической сети. По закону Ома при увеличении сопротивления нагрузки ток в цепи уменьшается.

Обратите внимание

Это позволяет реализовать селективное отключение поврежденных участков электрической сети. Автоматический выключатель на вводе в квартиру при номинальном токе 16 А и характеристикой «С» имеет ток срабатывания электромагнитного расцепителя 80 – 160 А.

Ток замыкания, превышающий 160 А гарантированно приведет к его отключению. Но тока короткого замыкания в квартире вряд ли хватит для отключения выключателя на трансформаторной подстанции, питающей весь дом, отключающегося при 500А.

И его даже не заметит защита кабельной линии, питающей подстанцию.

Воздействие межфазного замыкания на электрооборудование и людей

Когда возникают межфазовые замыкания, они разрушают электрооборудование или срывают режим его работы. При прохождении тока замыкания по токоведущим частям они одновременно испытывают динамическое и термическое воздействия.

Динамическое воздействие возникает при очень больших токах, в основном это имеет значение на мощных подстанциях, электростанциях и линиях электропередач энергосистемы.

Связано это с тем, что проводники с током, расположенные на некотором расстоянии друг относительно друга, в зависимости от направления этих токов либо притягиваются, либо отталкиваются.

Сила этого взаимодействия прямо пропорциональна величине токов и обратно пропорциональна расстоянию между ними.

При мощных авариях шины распределительных устройств взаимодействуют между собой с такой силой, что ломаются изоляторы, на которых они установлены. Обмотки электрических машин вырывает из пазов, а кабели извиваются, как змеи. Поломки токопроводов могут привести к возникновению дополнительных замкнутых участков, что делает аварийную ситуацию глобальней.

При проектировании все электрооборудование обязательно проверяют на то, чтобы оно выдержало ток КЗ без разрушения. У каждого электроаппарата есть заявленный в паспорте производителем ток динамической устойчивости, который должен быть больше расчетного тока КЗ.

Термическое воздействие заключается в нагреве проводников в процессе прохождения токов КЗ. Они превращаются в нагревательные элементы, на которых выделяется тепло. Мощность, выделяемая коротким замыканием на участке цепи пропорциональна его сопротивлению, помноженному на квадрат тока.

Все выпускаемое электрооборудование имеет помимо паспортной величины динамической устойчивости еще термическую устойчивость. Она тоже должна проверяться по расчетным параметрам КЗ, в которые дополнительно входит еще и время воздействия.

Важно

Когда в квартире возникает межфазное замыкание, бытовые автоматические выключатели срабатывают почти мгновенно. А вот время отключения защитных аппаратов в распределительных устройствах не может быть равно нулю.

Тогда они могут срабатывать группами, что приведет к массовым отключениям и затруднению поисков поврежденных участков. Чем ближе к потребителю защитный аппарат, тем меньше время его срабатывания.

Вышестоящий аппарат является его резервом, он сработает при токе КЗ, если нижестоящий его не отключит. Но время работы у него чуточку больше.

На участках, защищаемых аппаратами с выдержкой времени существует больше шансов, что шины или провода при КЗ будут расплавлены. Но и при мгновенном отключении разогреться оборудование успевает очень сильно.

Еще одним фактором воздействия межфазного замыкания на электрооборудование и людей является электрическая дуга. Она разогревает поверхности, с которыми соприкасается, до нескольких тысяч градусов. При таких температурах плавятся все использующиеся в электротехнике металлы. За время срабатывания защит порой выгорает несколько метров шин, пережигаются пополам кабельные линии.

Электрическая дуга выделяет тепло и в окружающее пространство. При наличии рядом горючих материалов может произойти пожар. Загореться может иизоляция кабелей и трансформаторное масло, использующееся в электроаппаратах для охлаждения или гашения дуги при коммутации.

Если рядом находятся люди, они могут пострадать или от ожогов сетчатки глаза из-за ослепляющего воздействия дуги, или получить другие ожоги. Такие ожоги трудно вылечить, так как они сопровождаются металлизацией: во все стороны летят брызги расплавленного металла. Осложнения возникают при загорании одежды на пострадавшем, которая вспыхивает мгновенно.

Поэтому при работе в действующих электроустановках безопасности уделяется особое внимание. Попасть под действие электрической дуги можно только при ошибках при выполнении переключений, подготовке рабочего места или нарушении технологии производства работ. Оказаться в месте, где замыкание возникло само по себе из-за пробоя изоляции, на практике нереально.

При КЗ напряжение в точке его возникновения существенно снижается. Происходит это в силу того же закона Ома: напряжение на участке цепи пропорционально току через него и его сопротивлению. Поскольку сопротивление в месте КЗ намного ниже, чем во всей остальной цепи до источника питания, то каким бы большим не был ток, напряжение все равно резко уменьшится.

Совет

Это приводит к дополнительным проблемам: в остальной части электроустановки отпадают пускатели электродвигателей, сбоят электронные устройства, системы компьютерного управления.

Поэтому на важных энергетических объектах системы управления и контроля за работой электрооборудования питаются от независимого источника электроэнергии (аккумуляторной батареи), а компьютерные системы обязательно имеют ИБП.

Профилактика межфазных замыканий

Частота возникновения КЗ в любых электроустановках зависит от следующих факторов:

  • возраста эксплуатируемого электрооборудования;
  • своевременности и качества выполнения планово-предупредительных ремонтов (ППР);
  • соблюдения режимов работы электрооборудования;
  • квалификации обслуживающего персонала.

На предприятиях всегда ведется статистический анализ всех аварийных отключений. На основании его делаются выводы, позволяющие предотвратить возникновение похожих инцидентов. Кроме того, каждое предприятие имеет собственный план модернизации электрооборудования, предусматривающий замену старых, физически и морально устаревших устройств на новые, современные.

Источник: https://voltland.ru/other/mezhfaznoe-zamykanie.html

Большая Энциклопедия Нефти и Газа

Cтраница 1

Междуфазные короткие замыкания – двухфазные и трехфазные – возникают как в сетях с заземленной, так и в сетях с изолированной нейтралью. Однофазные короткие замыкания могут происходить только в сетях с заземленной нейтралью.  [1]

Междуфазные короткие замыкания; двухфазные и трехфазные возникают как в сетях с заземленной, так и в сетях с изолированной нейтралью. Однофазные короткие замыкания могут происходить только в сетях с заземленной нейтралью.  [2]

Междуфазные короткие замыкания сопровождаются повреждением обмотки, а иногда и разрушением стали магнитопровода статора.  [3]

Междуфазные короткие замыкания вызывают значительные разрушения и сопровождаются понижением напряжения в питающей сети, нарушая нормальную работу остальных потребителей. Поэтому зашита электродвигателей от междуфазных повреждений является обязательной.  [4]

Произошломеждуфазное короткое замыкание, вызванное теми же причинами, что и пробой изоляции ( см. § 51 – 1), и протекающее весьма бурно.  [5]

Если отмеждуфазных коротких замыканий применяются токовые защиты, то расчет их токов срабатывания может быть произведен двумя способами.  [6]

Полукомплект отмеждуфазных коротких замыканий может действовать и при коротких замыканиях с землей, однако применение специального полукомплекта позволяет повысить чувствительность защиты для этого вида повреждений и обеспечить более четкую работу органов мощности по сравнению с соответствующими органами полукомплекта от междуфазных коротких замыканий.  [7]

Обратите внимание

Определение местмеждуфазных коротких замыканий в сетях 6 – 35 кв является не менее актуальной задачей. Однако отыскание таких повреждений с помощью стационарных устройств, установленных на питающей подстанции, затруднено из-за специфической древовидной структуры этих сетей.  [8]

Значительно реже возникаютмеждуфазные короткие замыкания в обмотках. Для групп однофазных трансформаторов они вообще исключены. Защита от коротких замыканий выполняется с действием на отключение поврежденного трансформатора. Для ограничения размеров разрушений целесообразно выполнять ее работающей без замедления.  [9]

Наиболее часто происходятмеждуфазные короткие замыкания и замыкания на землю.  [10]

Резервная защита отмеждуфазных коротких замыканий, устанавливаемая на двухобмоточном трансформаторе связи, включается со стороны генераторного напряжения.

Как правило, защита выполняется ненаправленной и отстраивается по времени от защиты элемента стороны высшего напряжения, имеющей наибольшее время действия.

Резервирование со стороны системы осуществляют защиты линий, связывающих ТЭЦ с подстанциями системы. Резервная защита включается со стороны подстанций системы.  [11]

Токовая отсечка отмеждуфазных коротких замыканий выполнена с помощью одного реле тока типа ЭТ-521, включенного на разность токов двух фаз.  [12]

Токовая отсечка отмеждуфазных коротких замыканий и максимальная токовая защита от сверхтоков, вызванных перегрузкой, которую нельзя устранить без остановки механизма ( например, завал шахтной мельницы углем), выполнены с помощью одного реле типа РТ-82, включенного на разность токов двух фаз. Защиты действуют на отключение электродвигателя.  [14]

Страницы:      1    2    3    4

Источник: http://www.ngpedia.ru/id30889p1.html

Основные сведения о коротких замыканиях

Основные сведения о коротких замыканиях.

 Короткое замыкание (КЗ) — электрическое соединение двух точек электрической сети с различными значениями потенциала, не предусмотренное конструкцией устройства и нарушающее его нормальную работу.

Короткие замыкания, возникающие в электрических сетях, машинах и аппаратах, отличаются большим разнообразием как по виду, так и по характеру повреждения.

Для упрощения расчетов и анализа поведения релейной защиты при повреждениях исключаются отдельные факторы, не оказывающие существенного влияния на значения токов и напряжений.

В частности, как правило, не учитывается при
расчетах переходное сопротивление в месте КЗ и все повреждения рассматриваются как непосредственное (или, как говорят, «глухое» или «металлическое») соединение фаз между собой или на землю (для сети с заземленной нейтралью).

Важно

Не учитываются токи намагничивания силовых трансформаторов и емкостные токи линий электропередачи напряжением до 330 кВ. Сопротивления всех трех фаз считаются одинаковыми.

Основные виды КЗ показаны на рис.1.17.

Междуфазные КЗ – двухфазные и трехфазные – возникают в сетях как с заземленной, так и с изолированной нейтралью. Однофазные КЗ могут происходить только в сетях с заземленной нейтралью.

Основными причинами, вызывающими повреждения на линиях электропередачи, являются перекрытия изоляции во время грозы, схлестывание и обрывы проводов при гололеде, набросы, перекрытия загрязненной и увлажненной изоляции, ошибки персонала и др.

Трехфазное короткое замыкание. Симметричное трехфазное КЗ – наиболее простой для расчета и анализа вид повреждения. Он характерен тем, что токи и напряжения всех фаз равны по значению как в месте КЗ, так и в любой другой точке сети:

Векторная диаграмма токов и напряжений при трехфазном КЗ приведена на рис.1.18. Поскольку рассматриваемая система симметрична, ток, проходящий в каждой фазе, отстает от создающей его ЭДС на одинаковый угол φk, определяемый соотношением активного и реактивного сопротивления цепи короткого замыкания:

        Для линий 110 кВ этот угол равен 60-78о; 220 кВ (один провод в фазе) – 73-82о; 330 кВ (два провода в фазе) – 80-85о; 500 кВ (три провода в фазе) – 84-87о; 750 кВ (четыре провода в фазе) – 86-88о (большие значения угла соответствуют большим сечениям проводов).

      Напряжение в месте КЗ равно нулю, а в любой другой точке сети может быть определено, как показано на рис.1.18, в.

Так как все фазные и междуфазные напряжения в точке трехфазного короткого замыкания равны нулю, а в точках, удаленных от места КЗ на небольшое расстояние, незначительны по значению, рассматриваемый вид повреждения представляет наибольшую опасность для работы энергосистемы с точки зрения устойчивости параллельной работы электростанций и узлов нагрузки.

        Двухфазное короткое замыкание. При двухфазном КЗ токи и напряжения разных фаз неодинаковы. Рассмотрим соотношения токов и напряжений, характерные для двухфазного КЗ между фазами В и С (рис.1.19). В поврежденных фазах в месте КЗ проходят одинаковые токи, а в неповрежденной фазе ток отсутствует

Междуфазное напряжение  в месте КЗ равно нулю, а фазные напряжения

       Так же как и при трехфазном КЗ, токи, проходящие в поврежденных фазах, отстают от создающей их ЭДС (в данном случае от ЭДС  или параллельного ему вектора) на угол φk, определяемый соотношением активных и реактивных сопротивлений цепи.

Совет

       Соответствующие векторные диаграммы для места КЗ построены на рис.1.19, а. По мере удаления от места КЗ фазные напряжения , и междуфазное напряжение будут увеличиваться, как показано на рис.1.19, а штриховыми линиями для точки n.

      С точки зрения влияния на устойчивость параллельной работы генераторов и на работу электродвигателей рассматриваемый вид повреждения представляет значительно меньшую опасность, чем трехфазное КЗ.

   Двухфазное короткое замыкание на землю в сети с заземленной нейтралью. Этот вид повреждения для сетей с изолированной нейтралью практически не отличается от двухфазного КЗ. Токи, проходящие в месте КЗ и в ветвях рассматриваемой схемы, а также междуфазные напряжения в разных точках сети имеют те же самые значения, что и при двухфазном КЗ.

     В сетях с заземленной нейтралью двухфазное КЗ на землю значительно более опасно, чем двухфазное КЗ. Это объясняется более значительным снижением междуфазных напряжений в месте КЗ, так как одно междуфазное напряжение уменьшается до нуля, а два других – до значения фазного напряжения неповрежденной фазы (рис.1.20).

Соотношение токов и напряжений в месте КЗ для этого вида повреждения имеют следующий вид:

   Однофазное короткое замыкание в сети с заземленной нейтралью.

 Однофазное КЗ может иметь место только в сетях с заземленной нейтралью (на пост советском пространстве, как правило, с заземленной нейтралью работают сети напряжением 110 кВ и выше).

Векторные диаграммы токов и напряжений в месте однофазного КЗ фазы А приведены на рис.1.21, а формулы, определяющие соотношения между ними, даны ниже:

    Однофазное КЗ, сопровождающиеся снижением до нуля в месте повреждения только одного фазного напряжения, представляют меньшую опасность для работы энергосистемы, чем рассмотренные выше междуфазные КЗ.

     Однофазное замыкание на землю в сети с малым током замыкания на землю. В сетях с малыми токами замыкания на землю, к которым относятся сети 3-35 кВ, работающие с изолированной нейтралью или с нейтралью, заземленной через дугогасящий реактор, замыкание одной фазы на землю сопровождается значительно меньшими токами, чем токи КЗ.

         При замыкании на землю одной фазы фазное напряжение поврежденной фазы (на рис.1.22, а) относительно земли становится равным нулю, а напряжения неповрежденных фаз  и  увеличивается в 1,73 раза и становится равным междуфазным (и  на рис 1.22, б).

Под действием напряжений и  через место повреждения проходит ток , замыкающийся через емкости неповрежденных фаз В и С. Емкость поврежденной фазы зашунтирована местом замыкания, и по этому ток через нее не проходит.

Значение тока в месте замыкания определяется следующим выражением:

       где ХΣ – суммарное сопротивление цепи замыкания на землю.

Обратите внимание

      Поскольку активные и индуктивные сопротивления генераторов, трансформаторов и кабельных линий много меньше, чем емкостное сопротивление сети, ими можно пренебречь. Тогда

      где f – частота сети, равная 50 Гц; С – емкость одной фазы сети относительно земли.

       Поскольку при замыкании фазы А на землю напряжение фаз В и С относительно земли равны по значению междуфазному напряжению и сдвинуты на угол 60о, то

В результате

       Емкость сети в основном определяется длиной присоединённых линий, в то время как емкости относительно земли обмоток генераторов и трансформаторов сравнительно невелики. Для расчета емкостного тока (А/км), проходящего при замыкании на землю в сети с изолированной нейтралью, можно воспользоваться следующими выражениями, определяющими ток на 1 км кабельной линии:

        Для линии 6 кВ и 10 кВ соответственно.

      где S – сечение кабеля, мм2; Uном – номинальное междуфазное напряжение кабеля, кВ.

      Для воздушных линий можно принимать следующие удельные значения емкостных токов: 6 кВ – 0,015 А/км; 10 кВ – 0,025 А/км; 30 кВ – 0,1 А/км.

   Для снижения тока замыкания на землю применяются специальные компенсирующие устройства – дугогасящие катушки, которые подключаются между нулевыми точками трансформаторов или генераторов и землей. В зависимости от настройки дугогасящей катушки ток замыкания на землю уменьшается до нуля или до небольшого остаточного значения.

      Поскольку токи замыкания на землю имеют небольшие значения, а все междуфазные напряжения остаются неизменными (рис.1.22), однофазное замыкание на землю не представляет непосредственной опасности для потребителей. Защита от этого вида повреждения, как правило, действует на сигнал.

Однако длительная работа сети с заземленной фазой нежелательна, так как длительное прохождение тока в месте замыкания на землю, а также повышенные в 1,73 раза напряжения неповрежденных фаз относительно земли могут привести к пробою или повреждению их изоляции и возникновению двухфазного КЗ. Поэтому допускается работа сети с заземлением одной фазы только в течении 2 ч.

За это время оперативный персонал с помощью устройств сигнализации должен обнаружить и вывести из схемы поврежденный участок.

Важно

     В сетях, питающих торфопредприятия и передвижные строительные механизмы, для обеспечения условий безопасности обслуживающего персонала защита от замыканий на землю выполняется с действием на отключение.

Источник: http://releyka.blogspot.com/2014/03/blog-post_14.html

Короткое замыкание. Токи короткого замыкания

Что называется коротким замыканием (КЗ)? Короткое замыкание – это соединение токоведущих частей разных фаз или потенциалов между собой или на корпус оборудования, соединенный с землей, в сетях электроснабжения или в электроприемниках.

Почему происходит короткое замыкание (кз)?

  • ухудшение сопротивления изоляции во влажной или химически активной среде;
  • при недопустимом перегреве изоляции;
  • механические воздействия;
  • ошибочные воздействия персонала при обслуживании и ремонте и т. д.

При коротком замыкании путь тока укорачивается

Как видно из самого названия процесса, при КЗ путь тока укорачивается, т. е. он идет, минуя сопротивление нагрузки, поэтому он может увеличиться до недопустимых величин, если напряжение не отключится под действием электрической зашиты.

Но напряжение может не отключиться и при наличии защиты, если КЗ случилось в удаленной точке, и из-за большого сопротивления до места КЗ ток недостаточен для срабатывания защиты. Но этот ток может быть достаточным для возгорания проводов, что может привести к пожару.

Чтобы быть уверенными в безопасности Вашей электропроводки, обязательно проконсультируйтесь с мастером электриком в Королеве или вызовите электрика в Мытищи. Мастер проведет ремонтные и электромонтажные работы, чтобы предотвратить возможность короткого замыкания.

Токи короткого замыкания: необходим точный расчет

Отсюда возникает необходимость расчета тока короткого замыкания — тока КЗ. Величина токов КЗ может меняться, если к сети электроснабжения вашего дома присоединяются другие электроприемники в более удаленных местах. В таких случаях снова производится расчет тока КЗ в месте установки новых электроприемников.

Токи КЗ производят также электродинамическое действие на аппараты и проводники, когда их детали могут деформироваться под действием механических сил, возникающих при больших токах.

Помощь в расчете токов короткого замыкания вам может оказать наш инженер электрик в Пушкино. И если у вас квартира, дом, офис или производственное помещение в Ивантеевке, то закажите у нас вызов электрика в Ивантеевке, чтобы провести диагностику электропроводки для предотвращения короткого замыкания.

При коротком замыкании происходит перегрев аппаратов и проводов

Термическое действие токов КЗ заключается в перегреве аппаратов и проводов. Поэтому при выборе аппаратов их нужно проверять по условиям КЗ, с тем чтобы они выдержали токи КЗ в месте их установки.

Как известно, наряду с сетями с глухозаземленной нейтралью существуют сети с изолированной нейтралью. Рассмотрим характерные отличия этих сетей при КЗ.

Однофазные короткие замыкания

На практике в большинстве случаев происходят однофазные короткие замыкания.

В сетях с изолированной нейтралью при соединении одной фазы с землей режим не является коротким замыканием и бесперебойность электроснабжения не нарушается, но он должен быть отключен, так как соответствует аварийному состоянию.

При замыкании одной фазы на землю в данной сети напряжения на двух других фазах повышаются в 1,73 раза, а напряжение на нулевой точке становится равным фазному напряжению относительно земли.

В сетях с глухозаземленной нейтралью при соединении провода с землей сгорает предохранитель или срабатывает автоматический выключатель, при этом электроснабжение нарушается, а при сгорании предохранителя могут повредиться обмотки двигателей при работе на двух фазах.

Если в любой части электропроводки или электроприбора (лампочки, утюга и т. д.) нарушится изоляция и фазный провод коснется нулевого, произойдет короткое замыкание

Поскольку между замкнувшимися проводами нет никакой нагрузки, иначе говоря, электрическое сопротивление места контакта практически равно нулю, ток через контакт начнет расти до тех пор, пока не расплавятся провода, что, в частности, может привести к пожару. Для защиты от короткого замыкания и служат предохранители.

Простой (в виде «пробки») предохранитель — это включенная в фазный провод легкоплавкая вставка, которая при росте тока сгорит и разомкнет цепь задолго до того, как произойдут более серьезные неприятности. Конструктивно предохранитель выполнен так, что эта микрокатастрофа не приводит к порче предохранительной колодки.

Пожертвовавшую собой маленькую героиню выбрасывают и заменяют следующей.

Защита от токов короткого замыкания

Как мы выяснили, токи КЗ весьма опасны, прежде всего с точки зрения пожарной безопасности. Поэтому необходимо построить защиту от токов короткого замыкания, то есть установить в щите автоматические выключатели.

Автоматические предохранители устроены так, что в случае короткого замыкания рост тока КЗ приводит к срабатыванию электромагнитного расцепителя мгновенного действия, который разъединяет электрическую цепь без ущерба для себя.

Для того, чтобы после устранения короткого замыкания снова включить электричество, необходимо просто нажать на белую кнопку (красная служит для выключения) или перекинуть вверх опустившийся при срабатывании предохранителя рычажок.

Правила монтажа электропроводки предусматривают расчет нагрузки и токов, идущих через автоматы защиты. Понятно, что предохранитель должен срабатывать при значениях тока, выбранных с солидным запасом.

Иначе случайные небольшие колебания напряжения в сети (а следовательно, и тока) будут приводить к постоянному ложному срабатыванию защиты.

С другой стороны, запас не должен быть и слишком велик, чтобы действия тока не причинило вреда сети раньше, чем произойдет отсечка.

Автоматический предохранитель защищает внутреннюю и внешнюю сеть

Заметим, что автоматические предохранители, установленные в начале каждой домовой линии (рабочей группы), защищают от короткого замыкания не только домовую сеть, но и наружную.

В самом деле, если бы их не было, то аварийное короткое замыкание привело бы к выходу из строя трансформаторной подстанции, а вернее, электрического силового щита более высокого уровня, так что электричества лишилось бы значительное количество пользователей, да и без вызова аварийной службы было бы не обойтись.

А при наличии «автомата» достаточно включить его после срабатывания (удалив, конечно, причину короткого замыкания). Становится понятна и необходимость нескольких линий в доме: если одна линия вылетела, в запасе есть другие.

Совет

Кстати, отсюда вывод: удобно, если от каждой рабочей группы питается лампочка аварийного освещения в районе счетчика или аварийная розетка, в которую можно включить переносную лампу.

Если материал этой статьи был для вас интересен и полезен, поделитесь им со своими знакомыми в социальных сетях. Возможно, кому-то эта информация очень пригодится. C уважением, Королевский электрик в Сергиевом Посаде.

Источник: http://elektrik-korolev.ru/kz.html

Короткое замыкание в электроустановках

     Сегодня поговорим о таком важном понятии как короткое замыкание в электроустановках. В принципе, короткое замыкание в электроустановках можно приравнять к обычному короткому замыканию в сети, ведь смысл один и тот же.

Чтобы было более понятнее о коротком замыкании даже чайникам, мы рассмотрим сразу несколько вопросов, например, что такое короткое замыкание, причины возникновения, какие виды короткого замыкания существуют, чем опасно короткое замыкание, нужны ли предохранители. Кстати, чаще всего термин короткое замыкание употребляют как к.з., это и удобно и понятно. К.з.

может возникнуть везде, где есть электричество (в домашней сети, на производстве, на подстанциях и даже в блоке питания и в обычной батарейке).
      Короткое замыкание в электроустановке — это нарушение нормального режима работы электроустановки, котороевызвано замыканием фаз на землю, либо замыканием фаз между собой в сетях с глухозаземлёнными нейтралями.

Главное запомнить, что короткое замыкание возникает в том случае, если где-то что-то замыкает. Из-за замыкания фазы на землю (на ноль) или из-за замыкания фаз между собой.

Короткое замыкание характеризуется резким увеличением тока и резким падением напряжения. Ток возрастает в несколько раз по сравнению с его нормальным значением. Это физика.
Из-за того, что у нас в момент к.з.

токи возросли в несколько раз, то проводники (провода) начинают нагреваться, а это в свою очередь ведёт к разрушению изоляции и к потерям электроэнергии. А это очень плохо сказывается на любом электроприборе или электроустановке, особенно на работе трансформатора.Теперь насчёт напряжения. Снижение напряжения при к.з.

ведёт к нарушению параллельной работы трансформаторов или генераторов, что в свою очередь может привести к системной аварии (аварии на производстве).

Виды короткого замыкания

      Вот Мы уже дошли и до видов к.з. Токи короткого замыкания в электроустановках. Всего существуют 2 вида короткого замыкания, их очень легко запомнить:

  •       Симметричное к.з. это когда все 3 фазы электроустановки находятся в одинаковом положении (трёхфазное короткое замыкание). По-другому говоря, при трёхфазном коротком замыкании сопротивления всех фаз цепи одинаково.
  •       Несимметричное к.з. —  к этому виду относятся такие короткие замыкания как двухфазное к.з., к.з двух фаз. на землю и однофазное к.з. В этих случаях сопротивления между фазами не равно друг другу.

     Остаётся только добавить некоторые важные замечания. Итак, важным фактором является относительная частота возникновения различных видов к.з. То есть, какие виды короткого замыкания чаще всего встречаются. По усреднённым данным в процентах это составляет:

  • Трёхфазное к.з. — 5%
  • Двухфазное к.з. — 10%
  • Однофазное к.з. — 65%
  • Двухфазное к.з. на землю — 20%

      Кстати, в месте появления короткого замыкания возникает электрическая дуга, которая приводит к повреждениям и создаёт переходное сопротивление. Теперь Вы знаете, что короткое замыкание — это опасность номер 1 как в электроустановках (двигатели, трансформаторы и т.д.) так и в обычной домашней проводке, что в итоге может привести к пожару. 

Защита от короткого замыкания

      Защита от короткого замыкания очень важна, ведь если не остановить режим к.з., то пострадает большинство электроприборов и проводка, а значит, и Ваш кошелёк.

Но если вовремя поставить надёжную защиту на дом или на всю сеть, то можно не бояться этого явления.
В настоящее время широко применяются автоматические выключатели, они защищают от короткого замыкания, и от перегрузок.

Выбираются они по силе тока, напряжению, по количеству фаз и времени срабатывания. Главное купить автоматический выключатель хорошего качества, чтобы он мог выдержать несколько к.з. подряд. Установить такое устройство может электрик. Это что касается проводки в доме.


     Если говорить о подстанциях или о предприятиях по выработки электричества, то там используется релейная защита.

Надеюсь, что Вам было интересно узнать о коротком замыкании более подробно)))

Источник: http://yznavai.ru/korotkoe-zamy-kanie-v-e-lektroustanovkah/

Особенности расчета коротких замыканий для релейной защиты. Междуфазные короткие замыкания в одной точке

Трехфазные КЗ рассматриваются для неразветвленной сети (рис. 3.1). Исходными при построении векторной диаграммы являются фазные ЭДС системы, и. Ток в фазах в месте КЗ и в защите одинаков и его модуль, например, для фазы А равен:, а аргумент (угол сдвига тока относительно)

, где , – индуктивная и активная составляющие сопротивления питающей системы; , – индуктивная и активная составляющие сопротивления распределительной сети.

Значение фазного тока КЗ можно определить по известному значению линейной (междуфазной) ЭДС:

                                                                                (3.1)

Модуль фазного остаточного напряжения в месте установки защиты, т. е. на шинах А, В, С а аргумент

                                             а)                                                                  б)

Рис. 3.1. Схема замещения сети (а) и векторная диаграмма токов и напряжений при трехфазном КЗ (б)

Трехфазное КЗ характеризуется наибольшим током и по его значению проверяют электрооборудование электроустановки, а также рассчитывают уставки защит.

Рис. 3.2. Векторные диаграммы при двухфазном КЗ между фазами В и С: а –; б

Двухфазное КЗ между фазами В и С (К(2)). Для всех элементов сети (рис. 3.1) принимается равенство сопротивлений прямой и обратной последовательностей<\p>

Исходными при построении векторной диаграммы являются векторы ЭДС системы.

Обратите внимание

Ток в неповрежденной фазе, а т. к. сумма токов трех фаз равна нулю, то (рис. 3.2). Токи в поврежденных фазах определяются эквивалентной ЭДС и суммой сопротивлений в контуре КЗ.

С учетом принятого выше допущения  ток двухфазного КЗ можно определить по току трехфазного КЗ:

                                                      (3.2)

В месте КЗ фазные напряжения поврежденных фаз (рис. 3.2).

Напряжение в месте установки защиты равно падению напряжения в линии, значение которого определяется током КЗ и сопротивлением петли КЗ: Вектор этого напряжения сдвинут относительно вектора тока на угол в сторону опережения.

Двухфазное КЗ характеризуется наименьшим током из всех видов междуфазных повреждений. Поэтому по его значению оценивается чувствительность РЗ от междуфазных КЗ.

3.3. Короткие замыкания на землю в системах с заземленной нейтралью

Однофазное КЗ фазы А (К(1)) характеризуется появлением токов нулевой последовательности. Сопротивление нулевой последовательности не равно сопротивлению прямой последовательности и всегда больше его (например, для ЛЭП (2,0–5,5)Z1л).

Ток в поврежденной фазе равен геометрической сумме токов прямой, обратной и нулевой последовательностей или с учетом того, чтоZ1 = Z2:

                                                                    (3.3)

Ток КЗ сдвинут относительно ЭДС фазы А в сторону отставания на угол (рис. 3.3):

а)

б)                                                                   в)

Рис. 3.3. Схема сети (а), ее схема замещения (б) и векторная диаграмма (в) при однофазном КЗ фазы А

Напряжение поврежденной фазы в месте установки защиты (в начале линии) равно:. В неповрежденных фазах напряжения не остаются неизменными, а вследствие наличия взаимной индукции эти напряжения возрастают. Кроме того, при однофазном КЗ появляется напряжение нулевой последовательности .

На рис. 3.4, а представлен участок сети, на промежуточной подстанции которой трансформатор Т работает с заземленной нейтралью, а на рис. 3.4, б – схемы замещения прямой, обратной и нулевой последовательностей при в точках  и . Энергосистема G и заземленная нейтраль трансформатора являются источниками токов нулевой последовательности.

Рис. 3.4. Распределение токов при заземлении нейтрали трансформатора Т при однофазном КЗ

Результирующее сопротивление нулевой последовательности

                                          .

Ток в месте КЗ определяется выражением (3.3). При КЗ в точке  через защиту выключателя Q1 в поврежденной фазе проходит ток

Важно

а при КЗ в точке  в поврежденной фазе защиты Q1 проходит ток, обусловленный заземленной нейтралью трансформатора Т:

                     .

Двухфазное КЗ на землю (К(1,1)) также характеризуется появлением составляющих нулевой последовательности. В месте металлического КЗ ток прямой, обратной и нулевой последовательностей при условии  определяется как:

Для защиты от замыканий на землю (ЗЗ) при защита включается на составляющие нулевой последовательности.

Поэтому для выбора параметров срабатывания защиты достаточно определить  значение, например, токов при и Поскольку при КЗ в одной и той же точке то при определении чувствительности защиты нулевой последовательности в сетях с заземленной нейтралью расчетным условием принимают ток однофазного КЗ.

Из-за резкого снижения напряжений и больших токов двухфазное

Источник: https://vunivere.ru/work98775

Двухфазное короткое замыкание

При двухфазном к.з. токи нулевой последовательности отсутствуют и поэтому для его анализа достаточно иметь только две схемы замещения: прямой и обратной последовательностей.

Предположим, что эти схемы замещения уже составлены, приведены к простейшему виду и известны их результирующиеи, а также.

Для дальнейших рассуждений воспользуемся схемой рис. 4.10.

Рис.4.9. Рис.4.10.

Уравнения (4.8)-(4.9) дают лишь две связи между четырьмя неизвестными, поэтому для их решения нужны еще два уравнения, которые получают из граничных условий для двухфазного к.з.:

(4.17)

Система уравнений составлена для фазы, но она имеет силу для любой другой фазы.

При записи граничных условий для всех видов несимметрии принимают, что фазанаходится в условиях отличных от условий для двух других фаз, то есть она является, как говорят, особой фазой.

За положительное направление фазных токов и их симметричных составляющих принимают направление к месту короткого замыкания.

В дальнейшем условимся при записи симметричных составляющих фазыне указывать индекс фазы.

Согласно системе уравнений (4.2), но из (4.17),

следовательно,. (4.18)

Согласно (4.3)-(4.5)

(4.19)

Используя (4.17)-(4.19), можно записать:

(4.20)

Согласно (4.2) токи в фазах будут:

(4.21)

Симметричные составляющие напряжения для фазыпри двухфазном к.з. определим согласно формул (4.17)-(4.19):

Тогда в соответствии с (4.2) напряжения фаз будут:

(4.22)

Заметим, что напряжение неповрежденной фазы в два раза больше по модулю напряжения поврежденных фаз и противоположно по знаку.

На рис. 4.11 представлены векторные диаграммы токов, напряжений и комплексная схема замещения при двухфазном к.з. в точке К.

Рис.4.11.

а – векторная диаграмма токов;

б – векторная диаграмма напряжений;

в – комплексная cхема замещения

Комплексная схема замещения предназначена для расчетов несиметричных режимов на расчетных столах переменного и постоянного тока.

Конфигурация комплексной схемы замещения определяется по выражению для тока прямой последовательности для рассматриваемого вида несимметрии.

Совет

Условные обозначения на комплексной схеме замещения :и т.д. служат для фиксации начала () и конца набранной на расчетном столе схемы замещения соответствующей последовательности.

По измерениям, проводимым на комлексной схеме замещения, набранной на расчетном столе постоянного тока, можно определить модули токов и напряжений всех последовательностей для фазы.

Зная из анализа каждого вида несимметрии положение векторов токов и напряжений всех последовательностей для фазына соответствующих векторных диаграммах, далее строят системы векторов симметричных составляющих токов и напряжений для всех фаз и получают по ним искомые векторы полных фазных величин.

Так, для рассматриваемого вида несимметричного к.з. достаточно применить в комлексной схеме замещения только два измерительных прибора: амперметр, включаемый в разрыв последовательной цепи и вольтметр, подключаемый к точками.

При этом, первый прибор покажет значение модуля тока прямой последовательности фазы, второй – модуля напряжения прямой последовательности фазы.

Таким образом, ценность применения комплексных схем замещения состоит в простоте определения искомых фазных величин в любой точке длясети любой сложности, схемы замещения соответствующих последовательностей которой набраны и соединены между собой соответствующим образом на расчетном столе.

4.6.2. Однофазное короткое замыкание на землю

Для этого вида к.з. (см. рис.4.12) нужно иметь три схемы замещения –

прямой обратной и нулевой последовательностей.

Будем по прежнему считать, что эти схемы замещения приведены к простейшему виду и нам известны.

Для этого случая к.з. с учетом граничных условий можно записать следующие уравнения

Рис.4.12.

(4.23) Согласно (4.3)-(4.5) и (4.23) имеем:

Следовательно,(4.24)

Согласно (4.2) и (4.23) имеем:, а используя (4.24), получим:.

Таким образом,. (4.25)

Токи в фазах согласно (4.23)-(4.24) будут:

(4.26)

Ток в земле будет равен:

(4.27)

Напряжения фаз

(4.28)

Обратите внимание

На рис. 4.13 представлены векторные диаграммы токов, напряжений и комплексная схема замещения при однофазном коротком замыкании на землю в точке.

Векторная диаграмма токов строится на основании формулы (4.24), а напряжений – исходя из того, что

Уголмежду векторамииизменяется от 60 до.

Рис.4.13.

а – векторная диаграмма токов;

б – векторная диаграмма напряжений;

в – комплексная схема замещения

4.6.3. Двухфазное короткое замыкание на землю

Для этого вида к.з. (см. рис.4.14) нужно иметь три схемы замещения – прямой обратной и нулевой последовательностей.

Будем по прежнему считать, что эти схемы замещения приведены к простейшему виду и нам известны.

Для этого вида к.з. уравнения связи с учетом граничных условий запишутся в следующем виде:(4.29) Согласно (4.3)-(4.5) и (4.29) имеем:

Рис.4.14.. (4.30)

Из (4.29) следует, что:

;.

Так как,

то

Подставляя выражение дляиз последнего выражения в (4.29), получим;(4.31)

Токи в фазах при двухфазном к.з.на землю будут:

. (4.32)

. (4.33)

Ток в земле при двухфазном к.з. на землю

(4.34)

Напряжения фаз

(4.35)

На рис. 4.15 представлены векторные диаграммы токов, напряжений и комплексная схема замещения при двухфазном коротком замыкании на землю в точке К.

Рис.4.15.

а – векторная диаграмма токов;

б – векторнафя диаграмма напряжений;

в – комплексная схема замещения

4.10. Анализ однократной продольной несимметрии

4.10.1. Общие замечания

Продольную несимметрию в какой -либо точке трехфазной сети в общем виде можно представить включением в рассечку каждой фазы неодинако-

вых сопротивлений.

Такой подход универсален, так как позволяет получить расчетные выражения в самом общем виде.

Однако указанный прием связан с необходимостью проведения сложных выкладок, а сам конечный результат характеризуется громоздкими выраже-

ниями.

Важно

Значительно проще и нагляднее проводить решение для каждого вида про- дольной несимметрии, используя характеризующие его граничные условия.

В данном параграфе будут рассмотрены два вида наиболее часто встречающейся продольной несимметрии, а именно: разрыв одной фазы и разрыв двух фаз (в одном и том же месте).

Основные уравнения падений напряжения в схемах замещения каждой последовательности, составленные для симметричной части сети, аналогичны уравнениям (4.3)-(4.5), и при чисто индуктивной цепи их можно представить в виде:

(4.54)

(4.55)

(4.56)

где- симметричные составляющие падения напряжения фазына несимметричном участке сети;

– результирующие реактивности схем замещения соответст-

вующих последовательностей относительно места продольной несиммет-

рии.

Дополнительные связи между симметричными составляющими токов и напряжений устанавливаются из граничных условий рассматриваемой продольной несимметрии.

4.10.2. Разрыв одной фазы

Разрыв одной фазы (рис.4.17) можно характеризовать следующми граничными условиями:

(4.57)

(4.58)

(4.59)

Эти условия аналогичны граничным условиям двухфазного к.з. на землю, следовательно данная аналогия должна быть и в расчетных выражениях.

Так при разложении на симметричные составляю-

щие условия (4.58)-(4.59) приводят к равенствам:

(4.60)

Используя (4.55)-(4.56) и (4.60), выразимичерез:

Рис.4.17.(4.61)

(4.62)

В соответствии с (4.57) можно записать

,

откуда, (4.63)

где верхний индекс (1) и далее (2) одновременно с нижним индексомуказывает обрыв соответственно одной и двух фаз.

После подстановки (4.63) в (4.54), получим:

. (4.64)

Подставляя (4.63) в (4.61)-(4.62), найдем:

; (4.65)

. (4.66)

Для определения напряжений с одной из сторон продольной несииметрии

(при разрыве одной фазы) нужно предварительно найти по схемам отдель-

ных последовательностей симметричной части цепи соответствующие со-

ставляющие этих напряжений. Прибавив к нимполучают симметричные составляющие напряжений с другой стороны продольной несимметрии.

Совет

Далее, зная все симметричные составляющие токов и напряжений, определяют фазные величины токов и напряжений путем сложения симметричных составляющих соответствующих фаз.

В частности, для определения фазных токов в месте обрыва одной фазы могут быть использованы выражения, аналогичные (4.32), в которых токи реактивностиидолжны быть соответственно замененены токоми реактивностямии.

Аналогично, для нахождения модуля фазных токов при обрыве одной фазы может быть использован коэффициент, определяемый по выражению, аналогичному (4.33).

На рис. 4.18 в качестве иллюстрации приведены векторные диаграммы напряжений по концам разрыва (соответственно в точкахи), а на рис.4.19 – комплексная схема замещения.

Рис.4.18.

Рис.4.19.

4.10.3. Разрыв двух фаз

При разрыве двух фаз (рис.4.20) граничные условия, очевидно будут:

(4.67)

(4.68)

(4.69)

то есть они аналогичны граничным условиям однофазного к.з.В соответствии с (4.23)-(4.24) следует, что симметричные составляющие тока фазыв месте обрыва двух других фаз связаны соотношением:

Рис.4.20.. (4.70) С другой стороны, поскольку согласно (4.69)

(4.71)

достаточно сложить правые части уравнений (4.54)-(4.55) и сумму приравнять нулю. Далее, учитывая (4.70), получим:

, (4.72)

где(4.73)

Для фазного тока целой фазы (фаза) согласно (4.70) имеем:

(4.74)

Симметричные составляющие разности фазных напряжений в месте обрыва двух фаз определяются для обратной последовательности соответственно по (4.55) и (4.56), а для прямой последовательности проще по (4.71):

(4.75)

5.3. Методика расчета токов к.з. в установках напряжением до 1000 В

Электрические установки напряжением до 1000 В, питаемые от распределительной сети электрической системы через понижающие трансформаторы, характеризуются , как правило, большой электрической удаленностью относительно источников питания. Это позволяет считать, что при к.з. за таким понижающим трансформатором напряжение в точке сети, где он присоединен, практически остается неизменным и равным своему номинальному значению.

Достоверность расчета токов к.з. в установках напряжением до 1000 В зависит в основном от того, насколько правильно оценены и полно учтены все сопротивления короткозамкнутой цепи.

Наряду с индуктивными сопротивлениями в рассматриваемой ситуации весьма существенную роль играют активные сопротивления таких элементов, как сборные шины и присоединения к ним, тансформаторы тока, контактные сопротивления выключателей, разъединителей, болтовых соединений шин, зажимов и разъемных контактов аппаратов, а также контакта непосредственно в месте к.з. и др., которыми при выполненни аналогичных расчетов для установок высокого напряжения всегда пренебрегают.

Обратите внимание

Точная оценка сопротивлений контактных соединений представляет трудную задачу, так как эти сопротивления зависят от многих трудноучитываемых факторов(состояния контактных поверхностей, степени затяжки болтов и др.).

С другой стороны, отказ от учета этих сопротивлений приводит к излишнему преувеличению токов к.з. со всеми вытекающими отсюда последствиями, а именно, к применению более мощной аппаратуры и проводников большего сечения, то есть к неоправданным дополнительным затратам на электрооборудование.

В принятых в 1966 г. Указаниях по проектированию силового электрооборудования промышленных предприятий рекомендуется при отсутствиидостоверных данных о переходных сопротивлениях учитывать их совокуп-

но ( включая и контакт в месте к.з.), вводя в короткозамкнутую цепь активное сопротивление, величина которого зависимости от места к.з. оценивается в пределахОм.

Нижний предел соответствует к.з. около распределительного щита подстанции, а верхний – при к.з. непосредствено у электроприемников, получающих питание от вторичных распределительных пунктов.

Сопротивления понижающих трансформаторов до 1000 кВА, кабелей до 1000 В, магистральных и распределительных шинопроводов (со спаренными фазами), а также приближенные величины сопротивлений аппаратов напряжений до 1000 В приведены в справочниках.

Сопротивления прямой последовательности шин (обычного исполнения) можно найти в справочниках или определить по выражению

, (5.6)

где- активное сопротивление фазы;- среднее геометрическое расстояние между шинами фаз;- эквивалентный радиус шины;

Важно

при этом следует принимать: для круглых шин (радиусом); для полосовой прямоугольной шины ( с размерамии).

Для пакета из нескольких полос подследует понимать толщину пакета в целом.

Сопротивлеие нулевой последовательности шин зависит от многих факторов (расположения и выполнения заземляющей проводки, близости металлоконструкций и т.д.) и изменяется в широких пределах.

Ориентировочно можно считать, что составляющие этого сопротивления находятся в пределах:.

При составлении схемы замещения следует руководствоваться указаниями § 2.2.

Поскольку сопротивления большинства элементов рассматриваемых установок задаются в именованных единицах, то весь расчет обычно ведут также в именованных единицах; при этом ввиду малых значений самих сопротивлений их выражают в миллиомах ().

Индуктивные сопротивления прямой последовательности воздушных и кабельных линий можно приближенно определить, принимая:Ом/кммОм – для воздушных линий;Ом/км=

=80 мОм – для кабельных линий.

Активное сопротивление воздушных и кабельных линий можно рассчитать по формуле, если известны материал и сечение провода (жилы) фазы:, (5.7)

где- длина линии, км;- сечение провода(жилы) фазы,;- удельная проводимость проводника,.

Относительное активное сопротивление трансфрматора определяют как:

, (5.8)

где-активные потери мощности короткого замыкания в трансформато-

ре, кВт;- номинальная мощность трансформатора, кВА.

Относительное индуктивное сопротивление трансформатора можно определить по формуле:

, (5.9)

где-напряжение короткого замыкания трансформатора, %.

Сопротивления трансформатора в именованных единицах:

, мОм; (5.10)

мОм. (5.11)

Совет

В качестве средних номинальных напряженийдля соответствующих ступеней трансформации рекомендуется принимать: 690, 400, 230 В.



Источник: https://infopedia.su/3xaf88.html

Ссылка на основную публикацию
Adblock
detector