Законы фарадея в химии и физике – краткое объяснение простыми словами

Законы Фарадея в химии и физике — краткое объяснение простыми словами

Для описания процессов в физике и химии есть целый ряд законов и соотношений, полученных экспериментальным и расчетным путем.

Ни единого исследования нельзя провести без предварительной оценки процессов по теоретическим соотношениям.

Законы Фарадея применяются и в физике, и в химии, а в этой статье мы постараемся кратко и понятно рассказать о всех знаменитых открытиях этого великого ученого.

История открытия

Закон Фарадея в электродинамике был открыт двумя ученными: Майклом Фарадеем и Джозефом Генри, но Фарадей опубликовал результаты своих работ раньше – в 1831 году.

В своих демонстрационных экспериментах в августе 1831 г. он использовал железный тор, на противоположные концы которого был намотан провод (по одному проводу на стороны).

На концы одного первого провода он подал питание от гальванической батареи, а на выводы второго подключил гальванометр. Конструкция была похожа на современный трансформатор.

Периодически включая и выключая напряжение на первом проводе, он наблюдал всплески на гальванометре.

Обратите внимание

Гальванометр — это высокочувствительный прибор для измерения силы токов малой величины.

Таким образом было изображено влияние магнитного поля, образовавшегося в результате протекания тока в первом проводе, на состояние второго проводника. Это воздействие передавалось от первого ко второму через сердечник – металлический тор. В результате исследований было обнаружено и влияние постоянного магнита, который двигается в катушке, на её обмотку.

Тогда Фарадей объяснял явление электромагнитной индукции с точки зрения силовых линий. Еще одной была установка для генерирования постоянного тока: медный диск вращался вблизи магнита, а скользящий по нему провод был токосъёмником. Это изобретение так и называется — диск Фарадея.

Ученные того периода не признали идеи Фарадея, но Максвелл взял исследования для основы своей магнитной теории. В 1836 г.

Майкл Фарадей установил соотношения для электрохимических процессов, которые назвали Законами электролиза Фарадея.

Первый описывает соотношения выделенной на электроде массы вещества и протекающего тока, а второй соотношения массы вещества в растворе и выделенного на электроде, для определенного количества электричества.

Электродинамика

Первые работы применяются в физике, конкретно в описании работы электрических машин и аппаратов (трансформаторов, двигателей и пр.). Закон Фарадея гласит:

Для контура индуцированная ЭДС прямо пропорциональна величине скорости магнитного потока, который перемещается через этот контур со знаком минус.

Это можно сказать простыми словами: чем быстрее магнитный поток движется через контур, тем больше на его выводах генерируется ЭДС.

Формула выглядит следующим образом:

Здесь dФ – магнитный поток, а dt – единица времени. Известно, что первая производная по времени – это скорость. Т.е скорость перемещения магнитного потока в данном конкретном случае. Кстати перемещаться может, как и источник магнитного поля (катушка с током – электромагнит, или постоянный магнит), так и контур.

Здесь же поток можно выразить по такой формуле:

B – магнитное поле, а dS – площадь поверхности.

Важно

Если рассматривать катушку с плотнонамотанными витками, при этом в количестве витков N, то закон Фарадея выглядит следующим образом:

Магнитный поток в формуле на один виток, измеряется в Веберах. Ток, протекающий в контуре, называется индукционным.

Электромагнитная индукция – явление протекания тока в замкнутом контуре под воздействием внешнего магнитного поля.

В формулах выше вы могли заметить знаки модуля, без них она имеет слегка иной вид, такой как было сказано в первой формулировке, со знаком минус.

Знак минус объясняет правило Ленца. Ток, возникающий в контуре, создает магнитное поле, оно направлено противоположно. Это является следствием закона сохранения энергии.

Направление индукционного тока можно определить по правилу правой руки или буравчика, мы его рассматривали на нашем сайте подробно.

Как уже было сказано, благодаря явлению электромагнитной индукции работают электрические машины трансформаторы, генераторы и двигатели. На иллюстрации показано протекание тока в обмотке якоря под воздействием магнитного поля статора.

В случае с генератором, при вращении его ротора внешними силами в обмотках ротора возникает ЭДС, ток порождает магнитное поле направленное противоположно (тот самый знак минус в формуле).

Совет

Чем больше ток, потребляемый нагрузкой генератора, тем больше это магнитное поле, и тем больше затрудняется его вращение.

И наоборот — при протекании тока в роторе возникает поле, которое взаимодействует с полем статора и ротор начинает вращаться. При нагрузке на вал ток в статоре и в роторе повышается, при этом нужно обеспечить переключение обмоток, но это уже другая тема, связанная с устройством электрических машин.

В основе работы трансформатора источником движущегося магнитного потока является переменное магнитное поле, возникающее в следствие протекания в первичной обмотке переменного тока.

Если вы желаете более подробно изучить вопрос, рекомендуем просмотреть видео, на котором легко и доступно рассказывается Закон Фарадея для электромагнитной индукции:

Электролиз

Кроме исследований ЭДС и электромагнитной индукции ученный сделал большие открытия и в других дисциплинах, в том числе химии.

При протекании тока через электролит ионы (положительные и отрицательные) начинают устремляться к электродам. Отрицательные движутся к аноду, положительные к катоду. При этом на одном из электродов выделяется определенная масса вещества, которое содержится в электролите.

Фарадей проводил эксперименты, пропуская разный ток через электролит и измеряя массу вещества отложившегося на электродах, вывел закономерности.

m=k*Q

m – масса вещества, q – заряд, а k – зависит от состава электролита.

А заряд можно выразить через ток за промежуток времени:

I=q/t, тогда q = i*t

Теперь можно определить массу вещества, которое выделится, зная ток и время, которое он протекал. Это называется Первый закон электролиза Фарадея.

Второй закон:

Масса химического элемента, который осядет на электроде, прямо пропорциональна эквивалентной массе элемента (молярной массе разделенной на число, которое зависит от химической реакции, в которой участвует вещество).

С учетом вышесказанного эти законы объединяются в формулу:

m – масса вещества, которое выделилось в граммах, n – количество переносимых электронов в электродном процессе, F=986485 Кл/моль – число Фарадея, t – время в секундах, M молярная масса вещества г/моль.

В реальности же из-за разных причин, масса выделяемого вещества меньше чем расчетная (при расчетах с учетом протекающего тока). Отношение теоретической и реальной масс называют выходом по току:

Bт = 100% * mрасч/mтеор

Обратите внимание

Ну и напоследок рекомендуем просмотреть подробное объяснение закона Фарадея для электролиза:

Источник: https://samelectrik.ru/zakony-faradeya-v-ximii-i-fizike.html

Закон электромагнитной индукции Фарадея

В 1831 году мир впервые узнал о понятии электромагнитной индукции. Именно тогда Майкл Фарадей обнаружил это явление, ставшее в итоге важнейшим открытием в электродинамике.

До середины XIX века считалось, что электрическое и магнитное поле не имеют никакой связи, и природа их существования различна. Но М. Фарадей был уверен в единой природе этих полей и их свойств.

Явление электромагнитной индукции, обнаруженное им, впоследствии стало фундаментом для устройства генераторов всех электростанций. Благодаря этому открытию знания человечества о электромагнетизме шагнули далеко вперед.

Фарадей проделал следующий опыт: он замыкал цепь в катушке I и вокруг нее возрастало магнитное поле. Далее линии индукции данного магнитного поля пересекали катушку II, в которой возникал индукционный ток.

Рис. 1. Схема опыта Фарадея

На самом деле, одновременно с Фарадеем, но независимо от него, другой ученый Джозеф Генри обнаружил это явление. Однако Фарадей опубликовал свои исследования раньше. Таким образом, автором закона электромагнитной индукции стал Майкл Фарадей.

Сколько бы экспериментов не проводил Фарадей, неизменным оставалось одно условие: для образования индукционного тока важным является изменение магнитного потока, пронизывающего замкнутый проводящий контур (катушку).

Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.

Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

Рис. 2. Формула закона электромагнитной индукции

И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея.

По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е.

Важно

индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.

В 1873 Дж.К.Максвелл по-новому изложил теорию электромагнитного поля. Уравнения, которые он вывел, легли в основу современной радиотехники и электротехники. Они выражаются следующим образом:

  • Edl = -dФ/dt – уравнение электродвижущей силы
  • Hdl = -dN/dt – уравнение магнитодвижущей силы.

Где E – напряженность электрического поля на участке dl; H – напряженность магнитного поля на участке dl; N – поток электрической индукции, t – время.

Симметричный характер данных уравнений устанавливает связь электрических и магнитных явлений, а также магнитных с электрическими. физический смысл, которым определяются эти уравнения, можно выразить следующими положениями:

  • если электрическое поле изменяется, то это изменение всегда сопровождается магнитным полем.
  • если магнитное поле изменяется, то это изменение всегда сопровождается электрическим полем.

Рис. 3. Возникновение вихревого магнитного поля

Также Максвелл установил, что распространение электромагнитного поля равна скорости распространения света.

Ученикам 11 класса необходимо знать, что электромагнитную индукцию впервые как явление обнаружил Майкл Фарадей. Он доказал, что электрическое и магнитное поле имеют общую природу. Самостоятельные исследования на основе опытов Фарадея также проводили такие великие деятели как Ленц и Максвелл, которые расширили наши познания в области электромагнитного поля.

Будь в числе первых на доске почета

Источник: https://obrazovaka.ru/fizika/zakon-elektromagnitnoy-indukcii-faradeya-formula.html

Закон электромагнитной индукции Фарадея для начинающих

Что может быть лучше, чем вечером понедельника почитать про основы электродинамики. Правильно, можно найти множество вещей, которые будут лучше. Тем не менее, мы все равно предлагаем Вам прочесть эту статью.

Времени занимает не много, а полезная информация останется в подсознании. Например, на экзамене, в условиях стресса, можно будет  успешно извлечь из недр памяти закон Фарадея.

Так как законов Фарадея несколько, уточним, что здесь мы говорим о законе индукции Фарадея.

Это и взаимодействие электрического и магнитного полей, электрический ток, электро-магнитное излучение, влияние поля на заряженные тела.

Здесь мы не ставим целью рассмотреть всю электродинамику. Упаси Боже! Рассмотрим лучше один из основных ее законов, который называется законом электромагнитной индукции Фарадея.

Майкл Фарадей (1791-1867)

История и определение

Фарадей, параллельно с Генри, открыл явление электромагнитной индукции в 1831 году. Правда, успел опубликовать результаты раньше. Закон Фарадея повсеместно используется в технике, в электродвигателях, трансформаторах, генераторах и дросселях. В чем суть закона Фарадея для электромагнитной индукции, если говорить просто? А вот в чем!

При изменении магнитного потока через замкнутый проводящий контур, в контуре возникает электрический ток. То есть, если мы скрутим из проволоки рамку и поместим ее в изменяющееся магнитное поле (возьмем магнит, и будем крутить его вокруг рамки), по рамке потечет ток!

Рамка в поле

Этот ток Фарадей назвал индукционным, а само явление окрестил электромагнитной индукцией.

Формулировка основного закона электродинамики – закона электромагнитной индукции Фарадея, выглядит и звучит следующим образом:

А откуда в формуле минус, спросите Вы. Для объяснения знака минус в этой формуле есть специальное правило Ленца. Оно гласит, что знак минус, в данном случае, указывает на то, как направлена возникающая ЭДС. Дело в том, что создаваемое индукционным током магнитное поле направлено так, что препятствует изменению магнитного потока, который вызвал индукционный ток.

Совет

Для определения направления индукционного тока применяется знаменитое правило буравчика, или правило правой руки, оно же правило правого винта.

Если ладонь правой руки расположить так, чтобы в неё входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то четыре вытянутых пальца укажут направление индукционного тока. Прямо у нас на сайте, вы также можете купить диплом по ПГС.

Правило правой руки

Примеры решения задач

Вот вроде бы и все. Значение закона Фарадея фундаментально, ведь на использовании данного закона построена основа почти всей электрической промышленности. Чтобы понимание пришло быстрее, рассмотрим пример решения задачи на закон Фарадея.

И помните, друзья! Если задача засела, как кость в горле, и нет больше сил ее терпеть – обратитесь к нашим авторам! Теперь вы знаете где заказать курсовую работу. Мы быстро предоставим подробное решение и разъясним все вопросы!

Источник: https://Zaochnik.ru/blog/zakon-elektromagnitnoj-indukcii-faradeya-dlya-nachinayushhix/

Электролиты, закон Фарадея

Определение 1

Явление выделения электрическим током химических составных частей проводника при прохождении тока называется электролизом.

Читайте также:  Почему не работают 3 лампы и вытяжка в ванной комнате?

Электролиз может протекать не во всех проводниках. К числу проводников, в которых электролиз не протекает, относят металлы, уголь и другие соединения (Это проводники первого рода). Проводники, в которых электролиз возможен, называют проводниками второго рода или электролитами. К электролитам относят большое количество водных растворов кислот, солей, некоторые жидкие и твердые соединения.

Явление электролиза часто сопровождается химическими реакциями (вторичные реакции), которые не связаны с прохождением тока.

В ходе электролиза на отрицательном полюсе (катоде) всегда выделяются металлы и водород, на положительном полюсе (аноде) — остаток химического соединения. Составные части электролита выделяются только на электродах.

Явление выделения составных частей электролита на электродах при прохождении электрического тока было исследовано М. Фарадеем.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Законы электролиза Фарадея не стоит путать с законом электромагнитной индукции Фарадея, рассматривающим электрический контур и силы в нём. В этом законе говорится о зависимости ЭДС от скорости изменения магнитного потока.

Явление электролиза отражает тот факт, что молекулы растворенного вещества в электролите существуют как две части: ион с положительным знаком и ион с отрицательным знаком. Под воздействием внешнего электрического поля эти ионы движутся: положительные ионы в сторону катода, отрицательные ионы в сторону анода.

Таким образом, когда отрицательный ион достигнет анода, то он отдает свой заряд электроду, что ведёт к изменению его заряда. Следовательно, некоторое количество электронов проходят по внешней цепи. Ион становится нейтральным и выделяется на аноде, как атом или молекула.

Положительный ион забирает у катода некоторое количество электронов (столько, сколько ему требуется для нейтрализации), что порождает его выделение на катоде.

Обратите внимание

Замечание 1

Ионы, знак заряда при которых отрицательный, выделяются на аноде, они были названы Фарадеем анионами, а положительно заряженные ионы получили название катионов.

Законы Фарадея

Фарадей установил экспериментальным путем два основных закона электролиза. В соответствии с первым законом, масса вещества $(m)$, которая выделяется на одном из электродов, прямо пропорциональна заряду $(q)$, который прошел через электролит:

$m=Kqleft(1
ight),$

где $K$ — электрохимический эквивалент, который отличается для разных электролитов. $K$ равен массе электролита, которая выделяется при прохождении заряда $q=1Kл$. Основной единицей измерения электрохимического коэффициента является $frac{кг}{Кл}$.

Кроме того, Фарадей заметил, что электрохимический эквивалент всегда пропорционален молярной массе вещества ($mu $) и обратно пропорционален валентности $(Z)$. Отношение $frac{mu }{Z}$ называют химическим эквивалентом вещества.

В соответствии со вторым законом Фарадея: электрохимический эквивалент прямо пропорционален химическому эквиваленту для избранного вещества:

$K=frac{Cmu }{Z}=frac{mu }{FZ}left(2
ight),$, где:

  • $C=frac{1}{F}$ — величина постоянная для всех веществ,
  • $F$ — постоянная Фарадея.

Первый и второй законы электролиза Фарадея часто выражают одной формулой, а именно:

$m=frac{mu }{Z}frac{q}{F}left(3
ight).$

Эмпирическим путем получено, что в СИ $F=9,65{cdot 10}^4frac{Кл}{моль}$ — фундаментальная физическая постоянная, отражающая отношение электрохимических и физических свойств вещества. Причем известно, что:

$F=q_eN_Aleft(4
ight),$ где:

  • $q_e$ — заряд электрона,
  • $N_A$ — постоянная Авогадро.

Объяснить законы Фарадея можно с точки зрения ионной проводимости. Допустим, что количество ионов, которое выделяется на одном из электродов при электролизе равно $
u $, заряд одного из ионов равен $q_1$. Следовательно, суммарный заряд, который прошел через электролит, на который действовало внешнее электрическое поле, равен:

$q=q_1
u left(5
ight).$

Пусть масса одного иона равна $m_1$, тогда масса вещества, которая выделяется на электроде, равна:

$m=m_1
u left(6
ight).$

Выразим из (5) $
u $, получим:

$
u =frac{q}{q_1}left(7
ight).$

Подставим (7) в (6), имеем:

$m=frac{m_1}{q_1}qleft(8
ight).$

Выражение (8) не что иное как первый закон Фарадея, где:

$K=frac{m_1}{q_1}=frac{m_1N_A}{q_1N_A}=frac{mu }{q_1N_A}left(9
ight).$

Сравним выражения (2) и (9), получим, что:

$q_1=frac{ZF}{N_A}left(10
ight).$

В выражении (10) мы получили, что заряд иона в электролите пропорционален валентности вещества $(Z)$. Этот результат показывает, что величины электрических зарядов ионов кратны между собой. Минимальный заряд, равный заряду электрона, имеют ионы одновалентных веществ.

Пример 1

Задание: Найдите скорость $v,$ с которой увеличивается слой вещества, являющегося проводником второго рода на плоской поверхности электрода в процессе электролиза при прохождении тока, плотность которого равна $j$. Считать, что электролит имеет валентность равную $Z$, плотность $
ho , молярную массу mu .$

Решение:

В качестве основы решения задачи применим объединенный закон Фарадея:

$m=frac{mu }{Z}frac{q}{F}left(1.1
ight),$

Важно

где $q=It$, $I$ — сила тока, текущего через электролит, $t$ — время, которое тек ток. Если считать, что осаждение никеля идет равномерно по поверхности металла, то массу выделившегося вещества запишем как:

$m=
ho Sh left(1.2
ight),$

где $
ho $ — плотность никеля, $S$ — площадь поверхности металла, $h$ – толщина слоя никеля. Силу тока, выразим через его плотность:

$I=jSleft(1.3
ight).$

Подставим в выражение (1.1) силу тока из (1.3) и массу из (1.2), получим:

$
ho Sh=frac{mu}{Z}frac{jSt}{F} o
ho h=frac{mu}{Z}frac{jt}{F}left(1.4
ight).$

В том случае, если плотность тока постоянна, то скорость ($v=frac{h}{t}$) увеличения слоя никеля так же постоянна. Разделим обе части выражения (1.4) на время, имеем:

$
ho frac{h}{t}=frac{mu }{Z}frac{j}{F} o v=frac{mu }{Z}frac{j}{
ho F}.$

Ответ: $v=frac{mu }{Z}frac{j}{
ho F}.$

Пример 2

Задание: Через раствор электролита ток силой $I$ тек в течение времени $t$. Какое количество вещества $(
u)$ выделится на катоде, каково число атомов $(N)$ вещества при этом, если металл имеет валентность $Z$.

Решение:

За основу решения задачи примем объединенный закон Фарадея:

$m=frac{mu }{Z}frac{q}{F}left(2.1
ight),$

где $q=It$, $I$ — сила тока, текущего через электролит, $t$ — время, которое тек ток. При этом нам известно, что:

$
u =frac{m}{mu }left(2.2
ight).$

Разделим правую и левую части выражения (2.1) на молярную массу ($mu $) вещества электролита, получим:

$
u =frac{1}{Z}frac{q}{F}=frac{It}{ZF}left(2.3
ight),$

где $q=It.$ Количество атомов осадка найдем, используя формулу:

$N=
u cdot N_A=frac{It}{ZF}N_A.$

Ответ: $
u =frac{It}{ZF}, N=frac{It}{ZF}N_A.$

Источник: https://spravochnick.ru/fizika/elektrolity_zakon_faradeya/

Учёный-бессребреник Майкл Фарадей

Майкл Фарадей (1791-1867) – известный британский ученый, прославившийся в области экспериментальной физики.

Известен своим открытием электромагнитной индукции, которая позднее легла в основу промышленного производства электричества.

Фарадей был членом многочисленных научных организаций, в том числе Лондонского королевского общества и Петербургской академии наук. Его по праву считают крупнейшим в истории науки ученым-экспериментатором.

Майкл Фарадей (Michael Faraday)

От бедности к науке

Майкл Фарадей появился на свет 22 сентября 1791 года в рабочей семье. Его отец и старший брат занимались кузнечным делом. Они жили очень скромно в одном из бедных кварталов британской столицы.

Хроническая нищета не позволила мальчику получить полноценного образования и с 13 лет вместо занятий в школе он работает разносчиком газет, а затем устраивается в книжную лавку.

Тяжелая жизнь только усилила его тягу к знаниям, и юный Майкл с упоением читал любую книгу, которая попадалась ему под руки.

Особое удовлетворение он испытывал от знакомства с научной литературой, прежде всего по физике и химии, а также статьями об электричестве. Работа переплетчиком книг позволила познакомиться с различными опытами, которые пытливый юноша с завидной регулярностью пытался повторить у себя дома.

В результате за 7 лет работы в лавке Фарадей научился больше, чем многие сверстники в стенах учебных заведений. Используя свой небольшой заработок, молодой человек приобретал химические препараты, с которыми проводил различные опыты.

Семья разделяла увлечения Майкла и старший брат платил по 1 шиллингу за посещение им лекций в философском обществе.

На пути к мечте

Во время этих занятий будущий ученый проявил недюжинный интерес к науке, о чем узнал один из клиентов мастерской. Он помог попасть увлеченному юноше на лекции известнейшего в то время английского химика Гемфи Дэви, чьи высказывания Фарадей тщательно законспектировал. Впоследствии он переплел эти записи и направил их Дэви вместе с письмом.

Это был смелый и отчаянный шаг Майкла, который Дэви не оценил. Однако через несколько дней во время проведения очередного эксперимента Гемфи травмировал глаз и ему срочно понадобился помощник. Тут как раз к месту оказалась просьба Фарадея о принятии на работу.

Тем более что в это время он уволился из мастерской, так как работа в ней стала отвлекать от научной деятельности.

Совет

Ученый пригласил молодого человека ассистентом в Королевский институт. Вскоре Фарадей вместе со своим наставником отправился в поездку по научным центрам Старого Света. Двухгодичное путешествие было очень полезным – начинающий ученый познакомился со многими светилами науки, среди которых были М. Шеврель, Ж.Л. Гей-Люссак и другие. Они отметили большой талант молодого англичанина.

После возвращения на родину Майкл некоторое время поработал вместе с Дэви, а затем занялся самостоятельными исследованиями. К тому времени он успел стать полноценным ученым, опубликовавшим около 40 работ в области химии.

В ходе проведенных экспериментов ему удалось провести сжижение хлора, а также получить бензол и аммиак. Фарадей открыл снотворный эффект паров эфира.

В то же время он проводит эксперимент по выплавке стали с добавлением никеля, в результате чего были открыты свойства нержавеющей стали.

В 1820 году датский физик Г. Эрстед описал магнитное действие тока и это вызвало большой интерес Фарадея к изучению связи между электрическими и магнитными полями.

Через год он создал прототип электродвигателя, наблюдая за вращением магнита вокруг проводника с током.

Вскоре вышла его работа «История успехов электромагнетизма», в которой автор констатировал, что электрический ток способен превращаться в магнетизм.

Отношения с Дэви стали портиться и хотя оба за глаза говорили друг другу комплименты, а Гемфри вообще назвал своим лучшим достижением «открытие Фарадея», отчуждение нарастало. В 1824 году Майкла избрали членом Королевского общества, но против этого высказался именно Дэви.

Научные достижения

Изучая взаимосвязь различных видов энергии, Фарадей решил превратить магнетизм в электричество. И эту задачу он выполнил с блеском. Майкл пытался использовать свойства электромагнита в обратном направлении, чтобы с помощью магнита произвести электрический ток.

В августе 1831 года ученому удалось обнаружить явление электромагнитной индукции, что помогло ему создать первый на планете электрогенератор. Современные устройства бытового и промышленного назначения стали сложнее на несколько порядков, но они продолжают работать на основании принципов, заложенных гениальным английским физиком.

Так функционируют локомотивы и вырабатывают энергию генераторы на электростанциях.

Обратите внимание

В поддержку открытого закона электромагнитной индукции ученый создал наглядное устройство для трансформации механической энергии в электрическую, названное диск Фарадея. В силу ряда особенностей оно не получило широкого применения, но сыграло важную роль в дальнейших научных изысканиях.

Диск Фарадея — первый электромагнитный генератор. При вращении диска вырабатывается постоянное напряжение

До Фарадея человечеству были известны два проявления электрической энергии – статическое электричество и гальванический ток. Оба из-за своих особенностей не смогли найти широкое практическое применение, чего не скажешь об индукционном электричестве. Оно имеет значительное напряжение, действует постоянно и проявляется в больших количествах.

В отличие от Эдисона, Майкла совершенно не интересовали прикладные возможности его открытий – главное для него было как можно глубже изучить природу. Он принципиально не патентовал свои изобретения и отказывался от выгодных коммерческих предложений.

Переворот в электрохимии

В период 1833-1834 годов Майкл провел серию экспериментов, связанных с электрохимией, в рамках которых изучал прохождение электротока через растворы оснований и кислот.

В результате были сформулированы законы электролиза (законы Фарадея), сыгравшие ключевую роль в развитии теории дискретных носителей электрического заряда. В последующие годы Майкл провел серию масштабных исследований электрических явлений в диэлектриках.

Сегодня без электролиза невозможно представить работу химической и металлургической промышленности.

Согласно первому закону электролиза количество электрохимического действия определяется количеством электричества в цепи. Второй закон гласит, что количество электричества является обратно пропорциональной величиной относительно атомного веса вещества.

Это означает, что для разложения одной молекулы необходимо одинаковое количество электрического тока. Ученый внес существенные коррективы в понятийный аппарат электрохимических явлений – вместо полюсов гальванической пары был утвержден новый термин электрод.

Вещество, разлагаемое током, было названо электролитом, а сам процесс – электролизом.

Клетка Фарадея

В 1836 году Майкл опубликовал работу, в которой доказал, что заряд электричества способен оказывать воздействие лишь на саму поверхность полностью замкнутой оболочки-проводника, не причиняя вреда всем, кто находится внутри нее. Ему удалось создать устройство, способное экранировать аппаратуру от электромагнитных излучений, названное клеткой Фарадея.

Оно было выполнено из металла, имеющего высокую электропроводность, а сама конструкция заземлялась. Принцип действия устройства довольно прост – при внешнем воздействии электрического поля электроны металла начинают приводиться в движение, в результате чегозаряд противоположных сторон клетки полностью компенсирует влияние внешнего электрического поля.

Читайте также:  Расшифровка маркировки кабеля ввгнг(а) 3х16 ок (n,pe)-066

Чтобы доказать наличие описанного эффекта сам Фарадей публично садился внутрь конструкции и после разрядов тока выходил оттуда живым и невредимым. Еще имя великого англичанина носит цилиндр, с помощью которого можно определить полноту электрического заряда и интенсивность пучка частиц.

В видео показан опыт с клеткой Фарадея (НИЯУ МИФИ).

Болезнь и новые открытия

Долгое умственное напряжение сказалось на самочувствии ученого, который в 1840 году даже вынужден был сделать паузу в научной работе. Его преследовали провалы в памяти, болезнь долго не отступала и перерыв продлился долгих 5 лет.

По другой версии ухудшение здоровья могло быть связано с отравлением парами ртути, которая часто использовалась во время экспериментов. В этот период Фарадей некоторое время жил в приморских районах Англии, а затем по совету друзей переехал в Швейцарию.

Это способствовало улучшению здоровья и возвращению к активному труду.

В 1845 году он открыл явление, получившее название «эффект Фарадея».

Оно относится к обширному классу магнитооптических явлений, которые возникают вследствие распространения линейно поляризованного света через среду, не обладающую естественной оптической активностью и находящуюся в магнитном поле.

Это была первая попытка показать объективную связь между оптикой и электромагнетизмом. Ученый был глубоко убежден в наличии тесного единства многих физических и химических явлений, что стало фундаментальной основой его научного мировоззрения.

В 1862 году он выдвинул предположение, утверждавшее наличие влияния магнитного поля на спектральные линии. Но тогда доказать его на практике с помощью специального оборудования не получилось. Гипотеза ученого была доказана только через 35 лет, за что Питер Зееман получил Нобелевскую премию.

Британские власти, зная о покладистом характере ученого, часто привлекали его к решению различных технических вопросов. В частности, Фарадей занимался усовершенствованием маяков, пытался найти лучшие способы защиты морских судов от коррозии, а также исследовал и описывал микрочастицы разнообразных металлов.

Проведенные опыты заложили основы современных нанотехнологий.

В почтенном возрасте память стала серьезно подводить Фарадея, здоровье также оставляло желать лучшего. В марте 1862 года в своем лабораторном журнале Майкл сделал последнюю запись описанного им опыта, получившего номер 16041.

Важно

Оставшиеся пять лет жизни ученый провел в личном имении Хэмптон Корт, которое ему предоставила королева Виктория в пожизненное владение. Незадолго до смерти его посетил один из друзей и поинтересовался самочувствием. Фарадей в ответ остроумно ответил: «Я жду».

Великий ученый умер 25 августа 1867 года в своем рабочем кресле и захоронен на Хайгейтском кладбище Лондона.

Характер ученого

Прожив большую часть жизни в бедности, Фарадей остался бессребреником. Он никогда не гнался за высокими гонорарами и званиями, отличаясь человеческой добротой и отзывчивостью. Ученый был всегда доброжелательным и выделялся своим природным обаянием.

В работе Майкл был чрезвычайно методичен и, обнаружив признаки нового явления, пытался вникнуть в его суть максимально глубоко. Все проведенные эксперименты тщательно продумывались и детально описывались.

Фарадей нередко проявлял внутреннюю гордость и самоуважение, не позволяя манипулировать собой, но эти качества никогда не перерастали в апломб, свойственный многим людям.

Интересные факты

  • В 1827 году ученый получил профессорскую кафедру в Королевском институте, но по-прежнему ощущал сильную нехватку средств. Друзья помогли Фарадею добиться пожизненного содержания, но министр казначейства назвал расточительством трату денег на него. В ответ Майкл гордо отказался от правительственной пенсии, заставив впоследствии чиновника публично извиняться.
  • Альберт Эйнштейн назвал учение об электромагнитном поле Фарадея самым важным достижением науки со времен И. Ньютона.
  • Многие биографы ученого отмечали его феноменальную работоспособность и постоянную нацеленность на результат – он буквально жил в лаборатории, будучи готовым в любой момент начать очередной эксперимент.
  • За свои заслуги Фарадей был избран почетным членом более 70 научных обществ и академий различных стран мира.
  • Британское химическое общество назвало именем Фарадея одну из самых престижных научных наград.
  • Широко известна скромность ученого – он отклонил предложение стать президентом Королевского общества и не стал принимать рыцарское достоинство.
  • Фарадей ввел в научный оборот ряд широко известных терминов – катод, анод, электролит, ион и другие.
  • Майкл Фарадей был одним из самых известных популяризаторов науки. Широко известны его рождественские лекции, которые он регулярно читал, начиная с 1826 года. Одна из наиболее известных под названием «История свечи» впоследствии была издана отдельной книгой, ставшей одной из первых научно-популярных изданий.
  • Ученый всю жизнь был глубоко верующим христианином и не изменил вере даже после опубликования теории Дарвина. Он лично проповедовал в одной из лондонских церквей и на его службы собиралось немало почитателей.
  • В честь Майкла Фарадея получила название внесистемная единица измерения электроразряда, применяемая в электрохимии.

Источник: https://elektroznatok.ru/info/people/michael-faraday

Рефераты, дипломные, курсовые работы – бесплатно: Библиофонд!

Марио Льоцци

К электричеству, которое получается при трении, а также от химических и термоэлектрических батарей, прибавлялось еще электричество, возникающее при электромагнитной индукции.

Поэтому Фарадей считал необходимым вмешаться во все еще продолжавшиеся, хотя уже и не такие жаркие, как в начале века, споры относительно того, обладает ли электричества единой природой независимо от способа, каким оно получено.

Мы уже упоминали о том, что Фарадею удалось окончательно устранить все сомнения, доказав опытным путем идентичность всех видов электричества.

Доказав тождественность различных видов электричества, Фарадей счел необходимым установить общую единицу измерения.

С этой целью, впервые применив баллистический гальванометр, он показал, что батарея из лейденских банок, заряженных определенным образом, и вольтов столб, работавший в течение определенного времени, одинаково воздействовали на стрелку гальванометра и вызывали одинаковые химические эффекты. На основе этого он вывел фундаментальный закон: «Химическая сила, подобно магнитной силе, прямо пропорциональна абсолютному количеству проходящего электричества».

В ходе этих исследований, проводившихся им в начале 1833 г., Фарадей открыл химическое разложение безводных веществ. Он заметил, что кусочек льда, помещенный в цепь батареи, прерывает ток, который, после того как лед растает, вновь восстанавливается.

Чтобы удостовериться в том, что это явление не связано с особыми свойствами льда, Фарадей последовательно провел опыты с хлористым свинцом, хлористым серебром и хлористым калием, представляющими собой при обычной температуре твердые тела, не проводящие электричества. Он убедился, что все эти тела в расплавленном состоянии проводят ток и разлагаются им.

Совет

Подвергнув анализу многие сложные вещества, Фарадей пришел к выводу, что проводимость этих веществ связана с химическим разложением, отвергнув тем самым мнение, разделявшееся всеми исследователями, будто наличие воды есть необходимое условие для электрохимического разложения, а значит, и для конструирования батареи.

Фарадей подтвердил свой вывод, сделанный на основе этих опытов, построив батареи с жидкостями, не содержащими воду (хлорат калия, различные хлористые и йодистые соединения и т. п.).

Так Фарадей подошел к теории электрохимической диссоциации. По причинам, которые и сейчас излагаются в книгах по физике, он отказался от представления о том, будто силы электрического поля вызывают расщепление молекул, и выдвинул свою собственную теорию, очень похожую на теорию Гроттгуса, но гораздо более искусственную. Интересно в этом исследовании его определение тока.

Представляет ли ток движение двух электрических флюидов в противоположных направлениях или движение в одном направлении единого флюида? Смело, опрокинув философские понятия науки своего времени, Фарадей отверг все представления о токе как о флюиде и определил электрический ток как «…ось сил, в которой силы, в точности равные по величине, направлены в противоположные стороны».

Таким образом, величайший физик-экспериментатор прошлого века лишает понятие электрического тока возможности его представления в виде механической модели, а объявляет его чисто математическим.

Химическое действие электрического тока в основном исследуется в седьмой серии работ Фарадея, появившейся в 1834 г. Этот раздел начинается с предложения установить новую терминологию для явлений электрохимического разложения.

Посоветовавшись с известным историком науки Уильямом Уэвеллом (1794—1866), Фарадей предложил заменить термин «полюс», с которым связано представление о притяжении, термином электрод или, более конкретно, анод и катод.

При выборе этих терминов он руководствовался не представлением о движении частей молекул, которого теория Фарадея не признавала, а направлением, которое должны иметь предполагаемые земные токи, если земной магнетизм действительно, как он думал, определяется ими.

Обратите внимание

Далее соответственно вводятся термины анион и катион и более общий термин ион и, наконец, термины электролит для обозначения тела, которое подвергается химическому разложению, и электролиз для обозначения самого явления разложения.

Собрав цепь, состоящую из главной ветви и двух побочных, как это описывается в современных учебниках, и поместив в каждую ветвь вольтаметр, он устранил всякие сомнения относительно того, что количество разложенного электролита «…

в точности пропорционально количеству прошедшего электричества, несмотря на изменения на тысячи ладов тех обстоятельств и условий, в которые электролит в данный момент поставлен», так что «продукты разложения могут быть собраны с такой точностью, что дают превосходное it-ценное средство для измерения количества электричества».

Такие измерительные приборы Фарадей назвал «вольтаэлектрометрами» (впоследствии этот термин сократился в «вольтаметр»). Он описывает пять, различных конструкций таких приборов и предлагает первую практическую единицу количества электричества: такое количество электричества, которое разлагает сотую часть кубического дюйма воды.

Проводя опыты с несколькими последовательно соединенными вольтаметрами, содержащими различные растворы, Фарадей заметил, что при одном и том же количестве электричества количество разложенного электролита зависит от природы электролита, и после многочисленных проверок; пришел к выводу, не всегда, однако, подтверждавшемуся на опыте, что, выражаясь современным языком, одно и то же количество электричества, освобождает количество простого вещества, пропорциональное его химическому эквиваленту.

Огромное значение этих исследований Фарадея было сразу же признана учеными того времени, свидетельством чего является блестящее развитие последующих исследований в этой области.

Что же касается теории электролитической проводимости, теории Гроттгуса, слегка измененной Фарадеем, как мы уже упоминали, а затем Вильгельмом Гитторфом (1824—1914), то она претерпела глубокое изменение в 1857 г.

благодаря работам Клаузиуса, который вновь вернулся к вопросу, поднимавшемуся еще Фарадеем: силы электрического поля не могут быть причиной разделения ионов в молекуле, ибо в этом случае процесс электролиза начинался бы только тогда, когда электродвижущая сила, приложенная к электродам, превосходила бы некий предел.

Между тем опыт показывает, что процесс происходит всегда, независимо от электродвижущей силы. Чтобы преодолеть эту трудность, Клаузиус, опираясь на кинетическую теорию (см. гл. 9), предположил, что ионы или какая-то их часть не связаны постоянно, а существуют в растворе уже в отделенном, свободном состоянии.

Однако эта теория, хотя ею и пользовались Квинке и Кольрауш, была встречена с недоверием и не получала признания вплоть до 1887 г., когда Сванте Аррениус (1859—1927) привел многочисленные доказательства ее, основывавшиеся на явлениях осмотического давления и на теории разбавленных растворов Вант-Гоффа.

Эти работы Аррениуса, продолженные затем Оствальдом и Нернстом, знаменуют собой то сближение физики с химией, которое начиная с конца прошлого века становится постепенно все более тесным.

ПОСТОЯННЫЕ ЭЛЕКТРИЧЕСКИЕ ЭЛЕМЕНТЫ

«Ваши открытия в области электрохимии представляют собой одну из самых больших революций в химии и открывают эру новых исследований» — писал Даниэль Фарадею в январе 1836 г., сообщая ему, что предметом своих университетских лекций выбрал электрохимические открытия Фарадея.

Важно

В процессе подготовки своих лекций Даниэль заметил, что на медной пластинке элемента, остававшейся в цепи в течение некоторого времени, образовывались прилипшие к ней пузырьки водорода.

Это наблюдение навело его на мысль, что, может быть, именно это отложение водорода на медной пластинке и служило причиной уменьшения активности батареи с течением времени. Проверить это можно было, помешав водороду отлагаться на меди, для чего его следовало вовлечь в химическую реакцию.

Так после нескольких попыток был создан первый образец батареи с деполяризатором, описание которой можно найти в любом учебнике физики. Даниэль назвал его постоянным элементом.

После этого по аналогии с элементом Даниэля были построены сотни других различных постоянных элементов. Мы упомянем здесь, не приводя их описания, которое легко можно найти во многих учебниках, лишь элемент Грове (1839 г.), элемент Бунзена (1841 г.), элемент Лекланше (1867 г.

), элемент Кларка (1878 г.), принятый за международный эталон электродвижущей силы, которому Рэлей в 1884 г. придал Н-образную форму; элемент Чапского (1861—1907), предложенный им в 1884 г. и вновь предложенный и реализованный Вестоном в 1893 г.

Читайте также:  Что лучше поставить: три однофазных реле напряжения или одно трехфазное?

и заменивший элемент Кларка в качестве эталона.

Составила Савельева Ф.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.portal-slovo.ru/

Источник: https://www.BiblioFond.ru/view.aspx?id=73496

Как Фарадей открыл закон электролиза « Учи физику!

В 1811 году Майкл Фарадей — в будущем один из величайших физиков, автор многих важных научных открытий, был молодым, никому не известным учеником лондонского переплетчика.

Однако он не был похож на остальных подмастерий, которые никогда не интересовались содержанием переплетаемых книг. Юный Фарадей выискивал среди них труды, посвященные естественным наукам, прежде всего физике и химии.

Каждую свободную минуту он проводил над книгами, прочитывая их от корки до корки и делая подробные выписки. Он даже самостоятельно ставил различные опыты.

Из своих скромных средств Фарадей выкраивал деньги для покупки необходимых материалов, а приборы весьма искусно мастерил из всякой всячины. Например, первую в своей жизни электро -статическую машину он сделал из стеклянной ампулы. Только некоторое время спустя ему удалось купить большой стеклянный цилиндр.

Несмотря на то, что Фарадей был самоучкой, он обладал большими познаниями в области своих любимых наук — химии и физики. В 1811 году двадцатилетний Фарадей услышал об открытиях итальянских ученых Гальвани и Вольта, которые создали электрический элемент, являвшийся источником электрического тока.

Фарадей решил немедленно сделать батарею гальванических элементов. В магазине с химическими товарами он купил тонкие цинковые пластинки и вырезал из них семь небольших дисков. Затем он положил на каждый диск медную монетку. В водном растворе хлористого натрия, т.е.

попросту говоря, в растворе поваренной соли, Фарадей намочил кусочки бумаги и положил их между парами цинковых и медных кружков. Маленькая электрическая батарея была готова. Теперь можно было взяться за изучение свойств нового источника тока.

Фарадей задумал присоединить свою батарею с помощью кусков проволоки к сосуду, наполненному водным раствором сернокислого магния.

Каково же было его удивление, когда ок увидел, что погруженная в жидкость проволока вскоре покрылась пузырьками газа. Это означало, что в сосуде протекала какая-то химическая реакция. Прозрачный поначалу раствор часа через два помутнел.

Фарадей, поставивший немало химических экспериментов, легко разгадал причину этого явления: содержащийся в растворе сернокислый магний разложился под влиянием электрического тока, поступав шего из маленькой батареи.

От образовавшегося при этом белого порошка — окиси магния, или магнезии — и помутнел раствор.

Совет

Хотя Фарадей понимал причины и ход явления, которое он наблюдал, тем не менее его чрезвычайно удивил тот факт, что электрический ток — к тому же поступавший из такой маленькой батареи — способен вызвать химическую реакцию. До него никто не обратил внимания на существование этого явления. Юный Майкл Фарадей открыл это явление и назвал его электролизом. Он задался целью изучить этот процесс.

Много лет спустя после описанного эксперимента Фарадей открыл два закона электролиза, т.е. реакции химического разложения вещества под влиянием электрического тока.

А пока что подходил к концу 1812 год. В Королевском институте были объявлены четыре публичные лекции английского физика сэра Гемфри Дэви.
Фарадей мечтал попасть на них. Благодаря помощи одного из заказчиков переплетной мастерской, знавшего страсть юного подмастерья, удалось это сделать.

Не было, пожалуй, у сэра Дэви более внимательного слушателя, чем Фарадей, который ловил буквально каждое слово известного физика.

Затем он старательно переписал свой конспект, сопроводил его рисунками, титульной стороной и посвящением, красиво переплел и вместе с сопроводительным письмом, выражавшим глубочайшее уважение и почтение, послал Гемфри Дэви.

Трудно сейчас установить, просил ли Фарадей принять его на должность лаборанта в Королевский институт — как предполагают некоторые — или нет, но одно известно наверняка. Весной 1814 года при поддержке Дэви, который был в то время директором института, Майкл Фарадей был зачислен в лабораторию. Он получил две маленькие чердачные комнатенки и недельное жалование в размере 25 шиллингов.

Так началась научная карьера Фарадея, который, несмотря на многочисленные трудности, неустанно добивался все новых успехов. Со временем он стал сотрудником Дэви, а потом занял его место. Фарадея интересовали многие явления. Изучение электролиза позволило ему, как мы уже знаем, открыть два закона, управляющие этим процессом.

Первый из них гласит, что вес вещества, выделяющегося или разлагающегося при прохождении тока, пропорционален количеству прошедшего электричества. Для иллюстрации второго закона электролиза можно воспользоваться рисунком, представляющим прибор, которым пользовался Фарадей.

Обратите внимание

В каждый из трех сосудов с водными растворами азотнокислого серебра, сернокислой меди и хлористого алюминия, ученый погрузил по два электрода, последовательно соединив их с электрической батареей при помощи куска проволоки. Оказалось, что количество металла, выделенного в каждом из сосудов, т.е.

серебра, меди и алюминия, находилось точно в таком соотношении, в каком эти металлы участвовали бы в химической реакции. На 108 граммов серебра приходилось 31,7 грамма меди и 9 граммов алюминия. Удалось измерить количество электричества, необходимого для выделения указанного количества металлов.

Оно было равно примерно 96 500 кулон/гэкв. Эта постоянная была названа в честь великого английского физика числом Фарадея. Точно так же, как указанные выше растворы, вели себя и другие вещества.

Независимо от характера химического соединения, подвергнутого электролизу, вес выделившегося на электродах металла или газа, был строго определенным. Его можно было подсчитать, зная химические свойства продуктов электролиза, продолжительность реакции и силу тока..

Результаты работ в области электролиза Фарадей опубликовал на рубеже 1833 и 1834 годов. Сегодня, благодаря знанию законов Фарадея, мы можем, в частности, получать в очень чистом виде химические элементы и соединения.

Эти законы положены в основу различных методов покрытия металлических предметов предохранительными или декоративными оболочками.

Стоит напомнить, что если бы не описанные выше открытия английского ученого, не было бы сегодня хромированных и никелированных предметов.

ЕЖИ ВЕЖБОВСКИЙ
Журнал “Горизонты техники для детей” №2-75г.

Источник: http://uchifiziku.ru/2012/05/14/kak-faradej-otkryl-zakon-elektroliza/

Закон ЭДС индукции Фарадея для трансформаторов

Электричество обладает способностью генерировать магнитное поле. В 1831 году М. Фарадей ввел понятие электромагнитная индукция. Он смог получить в закрытой системе проводников электричество, появляющееся при изменении показателей магнитного потока. Формула закона Фарадея дала толчок для развития электродинамики.

История развития

После доказательства закона электромагнитной индукции английским ученым М. Фарадеем над открытием работали российские ученые Э. Ленц и Б. Якоби. Благодаря их трудам, сегодня разработанный принцип положен в основу функционирования многих приборов и механизмов.

Основными агрегатами, в которых применяется закон электромагнитной индукции Фарадея, являются двигатель, трансформатор и множество иных приборов.

Индукцией электромагнитно именуется индуцирование в замкнутой проводящей системе электрического тока.

Такое явление становится возможным при физическом передвижении через проводниковую систему магнитного поля. Механическое действие влечет за собой появление электричества. Его принято называть индукционным.

Важно

До открытия закона Фарадея человечество не знало об иных способах создания электричества, кроме гальваники.

Если сквозь проводник пропустить магнитное поле, в нем будет возникать ЭДС индукции. Ее еще именуют электродвижущей силой. При помощи этого открытия удается представить в количественном выражении показатель.

Опытное доказательство

Проводя свои исследования, английский ученый установил, что индукционный ток получается одним из двух способов. В первом опыте он появляется при движении рамки в магнитном поле, создаваемом неподвижной катушкой. Второй способ предполагает неподвижное положение рамки. В этом эксперименте изменяется только поле катушки при ее движении или изменении силы тока в ней.

Опыты Фарадея привели исследователя к выводу, что при генерировании индукционного тока провоцируется увеличением или уменьшением магнитного потока в системе. Также опыты Фарадея позволили утверждать, что значение электричества, полученного опытным путем, не зависит от методологии, которой был изменен поток магнитной индукции. На показатель влияет только скорость такого изменения.

Количественное выражение

Установить количественное значение явления электромагнитной индукции позволяет закон Фарадея. Он гласит, что ЭДС, определяющаяся в системе, меняет значение пропорционально скорости перемещения потока в проводнике. Формула будет иметь такой вид:

Отрицательный знак свидетельствует о том, что ЭДС препятствует появлению изменений внутри контура. Для решения некоторых задач отрицательный знак в формуле не ставят. В этом случае результат записывают в виде модуля.

Система может включать в себя несколько витков. Количество их обозначается латинской буквой N. Все элементы контура пронизываются единым магнитным потоком. ЭДС индукции будет рассчитываться так:

Понятным примером воссоздания электричества в проводнике считается катушка, сквозь которую перемещается постоянный магнит.

Работа Э. Ленца

Направленность индукционного тока предоставляет возможность определить правило Ленца. Краткая формулировка звучит достаточно просто. Появляющийся при изменении показателей поля проводникового контура ток, препятствует благодаря своему магнитному полю такому изменению.

Если в катушку постепенно вводить магнит, в ней повышается уровень магнитного потока. Согласно правилу Ленца, магнитное поле будет иметь направление противоположное увеличению поля магнита.

Чтобы понять эту направленность, необходимо смотреть на магнит с северной стороны. Отсюда будет вкручиваться буравчик навстречу северному полюсу.

Ток будет перемещаться в сторону движения часовой стрелки.

Совет

Если магнит выводится из системы, магнитный поток в ней уменьшится. Чтобы установить направление тока, выкручивается буравчик. Вращения будет направлено в обратную сторону перемещения по циферблату часовой стрелки.

Формулировки Ленца приобретают большое значение для системы с контуром замкнутого типа и отсутствующим сопротивлением. Его принято именовать идеальным контуром. По правилу Ленца, в нем невозможно увеличить или уменьшить магнитный поток.

Понятие самоиндукции

Генерация индукции в идеальной системе, которое имеет место при падении или возрастании электричества в проводнике, именуется самоиндукцией.

Закон Фарадея для самоиндукции выражается равенством, когда при изменении электричества не произошло иных изменений:

где е – ЭДС, L – индуктивность закрытой катушки, ΔI/Δt – скорость, с которой происходят изменения силы тока.

Индуктивность

Отношение, которое показывает пропорциональность между такими категориями, как сила тока в проводящей системе и магнитным потоком именуется индуктивностью. На показатель имеет влияние физические габариты катушки и магнитные характеристики среды. Отношение описывается формулой:

Движущееся в контуре электричество провоцирует появление магнитного поля. Оно пронизывает собственный проводник и влечет появление своего потока сквозь контур. Причем собственный поток пропорционален электричеству, которая его порождает:

Фс = L*I

Значение индуктивности также формируется из закона Фарадея.

Недвижимая система

Сила Лоренца объясняет возникновение ЭДС при движении системы в поле со значением постоянным. Индукционная ЭДС имеет способность возникать и при неподвижной проводящей системе, находящейся в переменном магнитном поле. Сила Лоренца в таком примере не способна объяснить появление ЭДС индукции.

Максвелл для проводящих систем неподвижного типа предложил применять особое уравнение. Оно объясняет возникновение в таких системах ЭДС.

Главным принципом закона Фарадея-Максвелла является факт, что переменное поле образует в пространстве вокруг себя электрическое поле.

Оно выступает фактором, провоцирующим появление тока индукции в недвижимой системе. Перемещение вектора (Е) по стационарным контурам (L) является ЭДС:

При наличии тока переменного значения законы Фарадея водятся в уравнения Максвелла. Причем они могут быть представлены как в дифференциальной форме, так и в виде интегралов.

Труды в области электролиза

При использовании законов Фарадея описываются закономерности, которые существуют при электролизе. Этот процесс заключается в превращении веществ с разнообразными характеристиками. Это происходит при движении электричества сквозь электролит.

Эти закономерности были доказаны М. Фарадеем в 1834 году. Первое утверждение гласит, что масса вещества, которое образуется на электроде, меняется соответственно заряду, перемещенному сквозь электролит.

Второе утверждение гласит, что эквиваленты компонентов с разными характеристиками пропорциональны химическим эквивалентам этих компонентов.

Обратите внимание

Оба представленных утверждения совмещаются в объединенный закон Фарадея. Из него следует, что число Фарадея будет равняться электричеству, способному выделить на электролите 1 моль вещества. Ее рассчитывают на единицу валентности. Именно по объединенной формуле в далеком 1874 году был вычислен заряд электрона.

Законы электролиза, установленные Фарадеем, тестировались при различном значении тока, температуры, давления, а также при одновременном выделении двух и более веществ. Электролиз также проводился в разных расплавах и растворителях.

Концентрация электролита также отличалась в разных опытах. При этом иногда наблюдались небольшие отклонения от закона Фарадея. Они объясняются электронной проводимостью электролитов, которая определяется наравне с ионной проводимостью.

Открытия, сделанные английским физиком М. Фарадеем, позволили описать множество явлений. Его законы являются основой современной электродинамики. По этому принципу функционирует различное современное оборудование.

Источник: https://ProTransformatory.ru/raschety/zakon-faradeya

Ссылка на основную публикацию
Adblock
detector