Правильный выбор трансформатора тока для счетчика

Трансформатор тока для счетчика трехфазного

  1. Принцип работы измерительных трансформаторов
  2. Коэффициент трансформации электросчетчика
  3. Установка счетчика с трансформаторами тока

В электрических сетях, с напряжением 380 вольт, потребляемой мощностью свыше 60 кВт и током более 100 ампер, используется схема подключения трехфазного счетчика через трансформаторы тока. Данный вариант известен как косвенное подключение. Подобная схема дает возможность измерения высокой потребляемой мощности приборами учета, рассчитанными на низкие показатели мощности. Разница между высокими и низкими значениями компенсируется с помощью специального коэффициента, определяющего окончательные показатели счетчика.

Принцип работы измерительных трансформаторов

Принцип действия данных устройств довольно простой. По первичной обмотке трансформатора, включенной последовательно, протекает фазовый ток нагрузки. За счет этого возникает электромагнитная индукция, создающая ток во вторичной обмотке устройства. В эту же обмотку осуществляется включение токовой катушки трехфазного электросчетчика.

В зависимости от коэффициента трансформации, ток во вторичной цепи будет значительно меньше фазного тока нагрузки. Именно этот ток обеспечивает нормальную работу счетчика, а снимаемые показатели умножаются на величину коэффициента трансформации.

Таким образом, трансформаторы тока или измерительные трансформаторы преобразуют высокий первичный ток нагрузки в безопасное значение, удобное для проведения измерений.

Обратите внимание

Трансформаторы тока для электросчетчиков нормально функционируют при рабочей частоте в 50 Гц и вторичном номинальном токе в 5 ампер. Поэтому, если коэффициент трансформации составляет 100/5, это означает максимальную нагрузку в 100 ампер, а значение измерительного тока – 5 ампер.

Следовательно, в этом случае показания трехфазного счетчика умножаются в 20 раз (100/5). Благодаря такому конструктивному решению, отпала необходимость в изготовлении более мощных приборов учета.

Кроме того, обеспечивается надежная защита счетчика от коротких замыканий и перегрузок, поскольку сгоревший трансформатор меняется значительно легче по сравнению с установкой нового счетчика.

Существуют определенные недостатки при таком подключении. Прежде всего, измерительный ток в случае малого потребления, может быть меньше стартового тока счетчика.

Следовательно, счетчик не будет работать и выдавать показания. В первую очередь это касается счетчиков индукционного типа с очень большим собственным потреблением.

Современные электросчетчики такого недостатка практически не имеют.

Особое внимание при подключение нужно обращать на соблюдение полярности. Первичная катушка имеет входные клеммы. Одна из них предназначена для подключения фазы и обозначается Л1.

Другой выход – Л2 необходим, чтобы подключиться к нагрузке. Измерительная обмотка также имеет клеммы, обозначаемые соответственно, как И1 и И2.

Кабель, подключаемый к выходам Л1 и Л2, рассчитывается на необходимую нагрузку.

Для вторичных цепей используется проводник, поперечное сечение которого должно быть не ниже 2,5 мм2. Рекомендуется применять разноцветные промаркированные провода с обозначенными выводами.

Важно

Нередко подключение вторичной обмотки к счетчику осуществляется с помощью опломбированного промежуточного клеммника.

Использование клеммника позволяет проводить замену и обслуживание счетчика без отключения электроэнергии, поступающей к потребителям.

Схемы подключения

Подключение измерительного трансформатора к счетчику может быть выполнено разными способами.

Запрещается использовать трансформаторы тока с приборами учета, предназначенными для прямого включения в электрическую сеть.

В подобных случаях вначале изучается сама возможность такого подключения, выбирается наиболее подходящий трансформатор, в соответствии с индивидуальной электрической схемой.

Если измерительные трансформаторы имеют различный коэффициент трансформации, они не должны подключаться к одному и тому же к счетчику.

Перед подключением необходимо внимательно изучить схему расположения контактов, имеющихся на трехфазном счетчике. Общий принцип действия электросчетчиков является одинаковым, поэтому контактные клеммы располагаются на одних и тех же местах во всех приборах.

Контакт К1 соответствует питанию цепи трансформатора, К2 – подключение цепи напряжения, К3 является выходным контактом, подключаемым к трансформатору. Таким же образом подключается фаза «В» через контакты К4, К5 и К6, а также фаза «С» с контактами К7, К8, К9.

Совет

Контакт К10 является нулевым, к нему подключаются обмотки напряжения, расположенные внутри счетчика.

Чаще всего применяется наиболее простая схема раздельного подключения вторичных токовых цепей. К фазному зажиму от входного автомата сети подается фазовый ток. Для удобства монтажа с этого же контакта выполняется подключение второй клеммы катушки напряжения фазы на счетчике.

Выход фазы является окончанием первичной обмотки трансформатора. Его подключение осуществляется к нагрузке распределительного щита. Начало вторичной обмотки трансформатора соединяется с первым контактом токовой обмотки фазы счетчика. Конец вторичной обмотки трансформатора соединяется с окончанием токовой обмотки прибора учета. Таким же образом подключаются остальные фазы.

В соответствии с правилами выполняется соединение и заземление вторичных обмоток в виде полной звезды. Однако это требование отражено не в каждом паспорте электросчетчиков. поэтому во время ввода в действие иногда приходится отключать заземляющий шлейф. Выполнение всех монтажных работ должно происходить в строгом соответствии с утвержденным проектом.

Существует и другая схема подключения трехфазного счетчика через трансформаторы тока. применяемая очень редко. В данной схеме используются совмещенные цепи тока и напряжения. Возникает большая погрешность в показаниях. Кроме того, при такой схеме невозможно своевременно выявить обмоточный пробой в трансформаторе.

Большое значение имеет правильный выбор трансформатора. Максимальная нагрузка требует величины тока во вторичной цепи не менее 40% от номинала, а минимальная нагрузка – 5%. Все фазы должны чередоваться в установленном порядке и проверяться специальным прибором – фазометром.

Установка счетчика с трансформаторами тока

Подключение счетчика через трансформаторы тока

Трансформаторы тока (далее ТТ) — это устройства, предназначенные для преобразования (снижения) тока до значений, при которых возможна нормальная работа приборов учета.

Проще говоря, они используются в щитах учета для измерения расхода электроэнергии потребителей большой мощности, когда непосредственное или прямое включение счетчика недопустимо из-за высоких токов в измеряемой цепи, способных привести к сгоранию токовой катушки и выводу прибора учета из строя.

Конструктивно эти устройства представляют собой магнитопровод с двумя обмотками: первичной и вторичной. Первичная (W1) подключается последовательно к измеряемой силовой цепи, к вторичная (W2) — к токовой катушке прибора учета.

Обратите внимание

Первичная обмотка выполняется с большим сечением и меньшим количеством витков чем вторичная, часто выполняется в виде проходной шины. Снижение тока (собственно, коэффициент трансформации) — это отношение тока W1 к W2 (100/5, 200/5, 300/5, 500/5 и т. д.).

Помимо преобразования измеряемого тока до допустимых для измерения значений, ввиду отсутствия связи W1 с W2 в ТТ происходит разделение измерительных и первичных цепей.

Схемы подключения счетчика через трансформаторы тока

Для правильного учета электроэнергии с применением ТТ необходимо соблюдать полярность подключения их обмоток: начало и конец первичной имеют обозначение Л1 и Л2, вторичной — И1 и И2.

Схемы полукосвенного подключения трехфазных электросчетчиков (с применением только ТТ) могут быть выполнены в разных вариантах:

Семипроводная. Это устаревшая и наименее предпочтительная в плане электробезопасности схема ввиду наличия связи токовых и измерительных цепей — токовые цепи электросчетчика находятся под напряжением.

Десятипроводная схема. Более предпочтительная и рекомендуемая для использования в настоящее время. Отсутствие гальванической связи токовых цепей прибора учета и цепей напряжения делает подключение счетчика более безопасным.

Схема подключения электросчетчика через испытательную колодку .Согласно требований ПУЭ п. 1.5.23 должна применяться при включении образцового счетчика через ТТ. Наличие испытательной коробки позволяет осуществлять шунтирование, отключение токовых цепей, подключение прибора учета без отключения нагрузки, пофазное снятие напряжение с измеряемых цепей.

Подключение выполняется на основе десятипроводной схемы, ее отличие от последней состоит в наличии специального испытательного переходного блока между электросчетчиком и ТТ.

С соединением ТТ в “звезду”. Одни выводы вторичных обмоток ТТ соединяются в одной точке, образуя соединение «звезда», другие — с токовыми катушками счетчика, также соединяемые по схеме «звезда».

Недостаток такого способа подключения учета — большая сложность коммутации и проверки правильности сборки схемы.

Информация

Данный сайт создан исключительно в ознакомительных целях. Материалы ресурса носят справочный характер.

При цитировании материалов сайта активная гиперссылка на l220.ru обязательна.

Учет электроэнергии с потребляемым током более 100А выполняется счетчиками трансформаторного включения, которые подключаются к измеряемой нагрузке через измерительные трансформаторы. Рассмотрим основные характеристики трансформаторов тока.

1. Номинальное напряжение трансформатора тока

В нашем случае измерительный трансформатор должен быть на 0,66кВ.

Класс точности измерительных трансформаторов тока определяется назначением электросчетчика. Для коммерческого учета класс точности должен быть 0,5S, для технического учета допускается – 1,0.

3. Номинальный ток вторичной обмотки

Важно

4. Номинальный ток первичной обмотки

Вот этот параметр для проектировщиков наиболее важен. Сейчас рассмотрим требования по выбору номинального тока первичной обмотки измерительного трансформатора. Номинальный ток первичной обмотки определяет коэффициент трансформации.

Коэффициент трансформации измерительного трансформатора – отношение номинального тока первичной обмотки к номинальному току вторичной обмотки.

Коэффициент трансформации следует выбирать по расчетной нагрузке с учетом работы в аварийном режиме. Согласно ПУЭ допускается применение трансформаторов тока с завышенным коэффициентом трансформации:

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

В литературе можно встретить еще требования по выбору трансформаторов тока. Так завышенным по коэффициенту трансформации нужно считать тот трансформатор тока, у которого при 25%-ной расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке будет менее 10% номинального тока счетчика.

А сейчас вспомним математику и рассмотрим на примере данные требования.

Пусть электроустановка потребляет ток 140А (минимальная нагрузка 14А). Выберем измерительный трансформатор тока для счетчика.

Выполним проверку измерительного трансформатора Т-066 200/5. Коэффициент трансформации у него 40.

140/40=3,5А – ток вторичной обмотки при номинальном токе.

5*40/100=2А – минимальный ток вторичной обмотки при номинальной нагрузке.

Как видим 3,5А>2А – требование выполнено.

14/40=0,35А – ток вторичной обмотки при минимальном токе.

5*5/100=0,25А – минимальный ток вторичной обмотки при минимальной нагрузке.

Как видим 0,35А>0,25А – требование выполнено.

140*25/100 – 35А ток при 25%-ной нагрузке.

35/40=0,875 – ток во вторичной нагрузке при 25%-ной нагрузке.

5*10/100=0,5А – минимальный ток вторичной обмотки при 25%-ной нагрузке.

Как видим 0,875А>0,5А – требование выполнено.

Вывод: измерительный трансформатор Т-066 200/5 для нагрузки 140А выбран правильно.

По трансформаторам тока есть еще ГОСТ 7746—2001 (Трансформаторы тока. Общие технические условия), где можно найти классификацию, основные параметры и технические требования.

При выборе трансформаторов тока можно руководствоваться данными таблицы:

Источник: http://electricremont.ru/transformator-toka-dlya-schetchika-trehfaznogo.html

Выбор трансформаторов тока для присоединения расчетных счетчиков

Для правильного выбора трансформаторов тока (ТТ) для расчетных счетчиков, нам нужно правильно выбрать коэффициент трансформации трансформатора тока, исходя из того, что расчетная нагрузка присоединения, будет работать в аварийном режиме.

Коэффициент трансформации считается завышенным, если при 25%-ной нагрузке присоединения в нормальном режиме, ток во вторичной обмотке будет меньше 10% от номинального тока подключенного счетчика – 5 А.

Читайте также:  Какие бывают электрические розетки?

Для того, чтобы присоединенные приборы, работали в требуемом классе точности (напоминаю что для счетчиков коммерческого учета класс точности трансформаторов тока должен быть – 0,2; 0,2S; для технического учета – 0,5; 0,5S), необходимо чтобы, подключаемая вторичная нагрузка Zн не превышала номинальной вторичной нагрузки трансформатора тока, для данного класса точности, при этом должно выполняться условие Zн ≤ Zдоп. Подробно это рассмотрено в статье: «Выбор трансформаторов тока на напряжение 6(10) кВ».

Совет

Еще одним условием правильности выбора трансформаторов тока, является проверка трансформаторов тока на токовую ΔI и угловую погрешность δ.

Угловая погрешность учитывается только в показаниях счетчиков и ваттметров, и определяется углом δ между векторами I1 и I2.

Токовая погрешность определяется по формуле [Л1, с61]:

где:

  • Kном. – коэффициент трансформации;
  • I1 – ток первичной обмотки ТТ;
  • I2 – ток вторичной обмотки ТТ;

Пример выбора трансформатора тока для установки расчетных счетчиков

Нужно выбрать трансформаторы тока для отходящей линии, питающей трансформатор ТМ-2500/6. Расчетный ток в нормальном режиме составляет – 240,8А, в аварийном режиме, когда трансформатор будет перегружен на 1,2, ток составит – 289А.

Выбираем ТТ с коэффициентом трансформации 300/5.

1. Рассчитываем первичный ток при 25%-ной нагрузке:

2. Рассчитываем вторичный ток при 25%-ной нагрузке:

Как видим, трансформаторы тока выбраны правильно, так как выполняется условие:

I2 > 10%*Iн.счетчика, т. е. 1 > 0,5.

Рекомендую при выборе трансформаторов тока к расчетным счетчикам использовать таблицы II.4 – II.5.

Таблица II.5 Технические данные трансформаторов тока

Таблица II.4 Выбор трансформаторов тока

Максимальная расчетная мощность, кВАНапряжение380 В10,5 кВНагрузка, АКоэффициент трансформации, АНагрузка, АКоэффициент трансформации, А
10 16 20/5
15 23 30/5
20 30 30/5
25 38 40/5
30 46 50/5
35 53 50/5 (75/5)
40 61 75/5
50 77 75/5 (100/5)
60 91 100/5
70 106 100/5 (150/5)
80 122 150/5
90 137 150/5
100 152 150/5 6 10/5
125 190 200/5
150 228 300/5
160 242 300/5 9 10/5
180 10 10/5 (15/5)
200 304 300/5
240 365 400/5 13 15/5
250 14 15/5
300 456 600/5
320 487 600/5 19 20/5
400 609 600/5 23 30/5
560 853 1000/5 32 40/5
630 960 1000/5 36 40/5
750 1140 1500/5 43 50/5
1000 1520 1500/5 58 75/5

Примечание.

Учитывая необходимость подключения трансформаторов тока для питания измерительных приборов и реле, для которых нужны различные классы точности, высоковольтные трансформаторы тока выполняются с двумя вторичными обмотками.

Литература:

1. Справочник по расчету электрических сетей. И.Ф. Шаповалов. 1974г.

Благодарность:

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding».

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Источник: https://raschet.info/vybor-transformatorov-toka-dlja-prisoedinenija-raschetnyh-schetchikov/

Выбор трансформаторов тока. Различия и классификация

Трансформаторы тока служат для измерения характеристик в пределах значений номинального напряжения (Uном) от 0,66 до 750 кВ.

Устройства служат для изменения параметров тока до показателей удобных для производства измерений с последующей передачей информативного сигнала измерения приборам, работающим в релейных цепях защиты.

Приборы служат для выполнения функций по измерению электрической энергии, защиты от воздействий токов КЗ и других неисправностей, автоматики и управления в электроцепях переменного тока промышленной частоты 50 – 60 Гц.

Выбор трансформатора тока

При решении вопроса, как выбрать трансформатор тока, прежде всего, необходимо руководствоваться требованиями по установке устройства.

Классификация трансформаторов тока

Трансформаторы подразделяются на классы по роду установки, в зависимости от места нахождения устройства:

  1. Установка ТТ в ОРУ.
  2. УстановкиТТ в ЗРУ.
  3. Для работы внутри оболочек устройстви внутри масляной или газовой среды,например, внутри высоковольтных масляных или элегазовых выключателей.
  4. Специальная установка.

По способу установки, зависящей то конструктивной особенности устройства:

  1. Опорные, для монтажа на ровной опорной поверхности;
  2. Проходные ТТ находятся на шинопроводах в комплексных распределительных устройствах, используются в качестве проходного изолятора;
  3. Шинные –особенность этого трансформатора заключается в том, что в роли первичной обмоткивыступает шина РУ,которая пропущена через окно трансформатора, устройство крепиться на шине специальными винтами на планке;
  4. Встроенные используются для установки в силовых трансформаторах, баковых выключателях или токопроводах;
  5. Разъемные, предназначены для быстрой установки на шинах или кабелях без отключения токовой цепи.

По типу изоляции:

  1. Литая изоляция;
  2. Исполнение в пластмассовом корпусе;
  3. Применение твердой изоляции, с использованием фарфора, бакелита, полимеров, эпоксидной смолы;
  4. Вязкая изоляция из заливочных обволакивающих компаундов;
  5. Маслонаполненные;
  6. Газонаполненные,применяемая для трансформаторов, установленных на высоких и сверхвысоких напряжениях.
  7. Смешанная изоляция, (бумажно-масляная), ресурс бумажной изоляции даже после 40 лет без эксплуатации может оставаться очень большим.

Недостаточная защита трансформатора может привести к конденсированнию влаги на его дне, влажность может достичь опасных значений, приводящих к электрическому или тепловому пробою.

В зависимости от количества ступеней трансформации:

  1. Одноступенчатые (один коэффициент трансформации)
  2. Многоступенчатые или каскадные (несколько коэффициентов трансформации)

По количеству вторичных обмоток:

  1. Наличие одной вторичной обмотки.
  2. Существование нескольких вторичных обмоток.

По функциональному назначению вторичной обмотки:

  1. Для измерения или учета.
  2. Для выполнения защитных функций.
  3. Для измерения и защиты.
  4. Для выполнения измерений в различных переходных режимах.

По количеству коэффициентов трансформации:

  1. Наличие одного коэффициента трансформации.
  2. Несколько коэффициентов трансформации, полученных после изменения числа витков в обмотках или при наличии нескольких вторичных обмоток.

Трансформаторы тока различаются по классу напряжения:

Методы преобразования:

  1. Электромагнитные.
  2. Оптико-электронные.

По типу изоляции обмоток:

  1. Твердая изоляция.
  2. Газовая изоляция

Таблица №1. Типы трансформаторов тока

Таблица №1. Типы трансформаторов тока

Таблица №1. Типы трансформаторов тока

Класс точности трансформатора тока

При правильном выборе трансформатора тока нужно, прежде всего, руководствоваться сферой измерения где будет применяться трансформатор тока, если ТТ, например, будет применяться для АИИС КУЭ для снятия показаний коммерческого учета, то он должен иметь высокий класс точности.

Погрешности ТТ прежде всего зависимы от габаритов и конструктивных особенностей магнитопровода, а также от количества витков и сечения провода обмотки. На погрешность в показаниях большое влияние оказывает материал, из которого изготовлен магнитопровод.

При использовании в современных системах коммерческого учета нашли применение ТТ с магнитопроводом, выполненным из нанокристаллических (аморфных) сплавов, ТТ приобретает высокий класс точности измерения 0.5, 0,5S. 0.2S, при малом значении первичного тока.

Аморфные сплавы при повышении класса точности ТТ способствуют увеличению максимальной мощности обмоток, улучшают защиту измерительных приборов, подключенных в цепь с трансформатором, сводят к нулю эффект старения, что позволяет сохранить характеристики устройства. Так получают точные и качественные изделия,которые гарантируют стабильное функционирование систем АИИС КУЭ.

Высокий класс точности создает наиболее узкий диапазон трансформаторных погрешностей.

Различие между классами точности 0,5. 0,2и 0,5S, 0.2S заключается в погрешности обмотки класса 0,5 или 0,2ниже 5% от номинального тока. В таком значении тока,выявляется недоучет электроэнергии, сокращаемый при использовании трансформаторов с классом точности S.

Для различного вида технических измерений, возможно, подключение трансформаторов с классом точности – 1. Для применения в подключении указывающих амперметров разрешается применение ТТ с классом точности – 3.

Как правильно выбрать трансформатор тока

Выбор трансформаторов тока по напряжению

Номинальное значение напряжения (Uном ) ТТ выбирается большим или равным значению максимального рабочего напряжения Uуст.

Выбор трансформатора по первичному току

Значение( I1ном) номинального тока первичной обмотки должно быть выше или быть равным по значению(Iрабmax) рабочему расчетному установочному току высоковольтной линии отходящего от распредустройства. Расчет выбора трансформатора тока также зависит от Iкз, величины термического импульса Iкз в течении 1 сек, и термического импульса тока КЗ в течении 0,525 сек, по результатам срабатывания защит.

Выбор трансформатора тока по нагрузке

При малых номинальных токах и высоких номинальных кратковременных токах термической стойкости, трансформатор ограничен по мощности из-за своих размеров и максимальной магнитодвижущей силы.

При увеличении силы намагничивания вдвое, мощность увеличивается в четыре раза. Мощность ограничена зависимостью МДС от тока динамической стойкости.

Обратите внимание

Причина кроется в силовом воздействии электрического поля, которое в случае КЗ будет симметрировать витки первичной обмотки друг против друга. Мощность ограничена малыми габаритными размерами ТТ.

Расчет выбора трансформатора тока по мощности производится в зависимости сечения токопроводящего проводника и расчетной мощности.

Формула расчета в зависимости от сечения проводника

Rпр.=(Lпр.∙ρ)/Sпр.выбр

Где Sпр.выбр — выбранное сечение проводника, (мм2)

Расчет нагрузочной мощности определяется по формуле

Sрас.=I²ном∙(Rпр.+Rcч.+Rк )

Согласно ГОСТУ параметры ТТ по нагрузке, определяются для трансформаторов тока номинальной мощностью равной 5ВА и 10 ВА с нижним пределом устанавливаемым 3,75 ВА.

Таблица выбора трансформаторов тока

Выбор трансформатора тока по коэффициенту трансформации

В случае повышенного коэффициента разрешается ставить счетчики на приемном вводе потребителя. На силовых трансформаторах счетчики могут монтироваться со стороны низшего напряжения.

Наибольшим спросом пользуются трансформаторы, имеющие один коэффициент трансформации, он не изменяется на протяжении всего срока эксплуатации.

Примером коэффициентов трансформации считаются ТТ 150/5 (N-30); 600/5 (N-120); 1000/5(N-200); 100/1(N-100)

Источник: http://enargys.ru/vyibor-transformatorov-toka/

Подключение трехфазного счетчика через трансформаторы тока

Широко распространённая схема подключения трехфазного счетчика через трансформаторы тока (ТТ) применяется в электрических сетях напряжением 380 Вольт (мощность более 60 кВт и ток до 100 Ампер).

Этот способ принято называть косвенным подключением, которое позволяет измерять большие нагрузочные токи посредством приборов учёта, рассчитанных на малую мощность (структурная схема включения приведена ниже).

Косвенное включение счётчика через ТТ

Как видно из рисунка, этот метод существенно отличается от прямого включения, когда счётный прибор подключается непосредственно в фазные линии.

Воспользовавшись этим способом подсоединения трехфазного электросчетчика, удаётся снизить действующие в измерительных цепях токи до значений, определяемых коэффициентом передачи ТТ. Указанное пояснение позволяет понять, зачем применяется этот прибор (точнее для чего необходимо его включение в измерительную цепь).

Устройство и принцип работы измерительных трансформаторов

Классический трансформатор тока для счетчика представляет собой индуктивный преобразователь особой конструкции, в котором имеется две обмотки с различным количеством витков. Их число во вторичной однофазной катушке обычно меньше, чем в первичной обмотке.

Дополнительная информация. Применение трансформатора тока – один из способов снижения значений рабочих параметров с целью их измерения посредством обычных приборов.

При протекании тока в первичной обмотке ТТ, включенной последовательно в измеряемую линию, за счёт индуктивной связи во второй цепи начинает протекать нагрузочный фазовый ток меньшей величины. В эту же цепь включается токовая катушка бытового или промышленного трехфазного счѐтчика, рассчитанного на снятие текущих показаний расхода электроэнергии.

Читайте также:  5 схем плавного включения ламп накаливания

Токовые характеристики ТТ

Подключение счетчика через трансформаторы тока

Величина тока во вторичной цепи трансформаторного прибора зависит от коэффициента преобразования (Ктр), который может принимать стандартные значения из следующего ряда:

  • В пределах от 20/5 до 50/5;
  • В границах от 70/5 до 100/5;
  • А также в диапазоне от 200/5 до 500/5.

Обратите внимание! В этом списке приведены лишь наиболее употребительные значения Ктр для электросчётчиков (полный перечень приводится на рисунке ниже).

Из приведённой таблицы видно, что если мы выберем определённое значение тока во вторичной цепи (5 Ампер, например), то этот же параметр в первичной цепи трансформатора для счетчика может быть заметно больше (кратность составит от 4-х до 100 раз).

Преимущества и недостатки

Конструкция ТТ обеспечивает возможность безопасного подключения электросчетчика, который в нормальных условиях функционирует на рабочей сетевой частоте 50 Гц и номинальном токе во вторичной обмотке, равном 5-ти Амперам. Выбор значения Ктр = 100/5, например, позволяет рассчитать кратность передачи, обеспечивающей получение в нагрузочной цепи тока в 100 Ампер. В данном случае она соответствует 20-ти.

Подключение трехфазного счетчика

За счёт использования трансформаторных изделий этого класса удалось отказаться от неудобных в изготовлении и громоздких электрических приборов. Помимо этого, возможность подключения счетчика через трансформаторы тока гарантирует их надежную защищённость от КЗ и перегрузок.

Действительно, в аварийных ситуациях чаще всего из строя будет выходить сравнительно дешёвый ТТ, а не подключённый к нему прибор учёта электроэнергии.

К числу недостатков, которые имеют фазные счетчики, следует отнести:

  1. Во-первых, при малом потреблении в линейных цепях измерительный ток во вторичной обмотке иногда не достигает порога срабатывания механизма счетчика, вследствие чего последний не способен функционировать в нормальном режиме;
  2. Во-вторых, при его подключении необходимо обращать внимание на полярность включения трансформаторов тока, что не всегда удобно;
  3. И, наконец, при использовании ТТ потребуется дополнительное место для его установки, а сам прибор нуждается в периодической поверке (совместно с подключённым электросчётчиком).

Обратите внимание! Современные электронные счетчики электроэнергии практически лишены первого недостатка, который в основном касается электромеханических моделей.

Другие проблемные места скорее можно отнести к сложностям включения прибора в трёхфазную цепь, чем к его недостаткам.

Особенности подключения

Трёхфазный счётчик: выбор, монтаж, подключение

При более внимательном рассмотрении схемы подключения 3 фазного счетчика через трансформатор обнаруживается, что она предполагает обязательное соблюдение полярности включения обеих обмоток. Перед тем, как подключить его посредством ТТ, важно обратить внимание на следующие детали:

  • На первичной катушке имеются три пары входных клемм, один из контактов которых предназначен для подсоединения соответствующего фазного провода и обозначается литерой «Л1» (от второго контакта, помечаемого как «Л2» провод идёт непосредственно к 3х фазной нагрузке);

Порядок подключения к клеммам

  • На катушке измерения также имеются клеммы, обозначаемые как «И1» и «И2», соответственно, к которым в параллель подключается обмотка фазного счётчика;
  • Сечение подключаемого к клеммам первичной обмотки кабеля выбирается исходя из значения тока в нагрузке;
  • Во вторичных цепях должен применяться проводник с рабочим сечением не ниже 2,5 мм² (он идёт непосредственно к счетчику).

Дополнительная информация. Специалисты советуют организовывать подключение 3-х фазного ТТ особыми маркированными по цвету проводами, на концах которых нанесено обозначение.

Кроме того, очень часто подсоединение к счётчику вторичной обмотки организуется посредством промежуточного клеммника, на котором ставится специальная пломба.

Отметим также, что наличие дополнительных контактов обеспечивает простоту замены и обслуживания 3-х фазного счётного прибора. При его применении энергию от потребителей во время ремонтных манипуляций можно не отключать.

Схемы подключения трансформаторов

От того, какая схема подключения трехфазного счетчика через трансформаторы тока используется в данном случае, зависит надёжность работы всей измерительной системы в целом. При выборе той или иной из них необходимо учитывать следующие требования:

  • Запрещено включать счетчик через трансформаторы тока, если он предназначен для прямого подсоединения в измерительную сеть;
  • При косвенном включении необходимо исследовать электрическую схему и определиться с подходящей для неё моделью трансформатора (по мощности и току);

Важно! Перед тем, как выбрать трансформатор для каждой конкретной ситуации, прежде всего, следует обратить внимание на его коэффициент преобразования, имеющий отличные значения для разных моделей.

  • Прежде чем выбрать трансформатор тока для определённой измерительной схемы нужно внимательно изучить порядок расположения контактов, к которым подключается трехфазный счетчик.

Далее будет рассмотрена конкретная схема подключения счетчика в трёхфазную цепь (смотрите рисунок ниже).

Принципиальная схема включения

Поскольку общий принцип функционирования всех электросчетчиков одинаков, то назначение имеющихся на них клемм также схоже. Для фазы «А» оно выглядит следующим образом:

  • Контакт К1 нужен для того, чтобы подключать к счётчику токовый провод и один конец катушки напряжения трансформатора;
  • Клемма К2 предназначена для подключения нагрузки к данной фазной линии;
  • Контакт К3 используется для подсоединения второго конца обмотки напряжения ТТ.

Таким же образом к счётчику подключается вторая фаза «В» (посредством клемм К4, К5 и К6), а также третья – «С» с контактами К7, К8, К9.

Обратите внимание! Клемма К10 – общая нулевая, относительно её на К1, К4 и К7 счётчика поступают фазные напряжения со следующими тремя обозначениями: «А», «В» и «С».

К недостаткам совмещённой схемы следует отнести большую погрешность измерения потребляемой мощности, а также невозможность выявления пробоя в обмотках трансформатора.

На практике чаще всего применяется более простая схема подключения электросчетчика, согласно которой осуществляется совмещённое подсоединение вторичных токовых цепей. Она функционирует следующим образом:

  • К токовому контакту счётчика от сетевого автомата подключаются фазные провода. Для упрощения схемы к нему же подсоединяется вторая клемма фазного напряжения;
  • Фазный ввод катушки выбираем таким образом, чтобы он одновременно являлся выходом первичной обмотки ТТ. В дальнейшем он подсоединяется к нагрузке через распределительные цепи;
  • Начало вторичной трансформаторной обмотки подсоединяется к первому контакту токовой катушки счетчика (по одной из фаз);
  • Конец вторичной трансформаторной катушки соединён с концом токовой обмотки подключенного счётного механизма.

Аналогичным образом подключаются все оставшиеся фазы.

Соединение и заземление вторичных обмоток счётчика осуществляется в соответствии с требованиями ПУЭ (они выполняются по схеме «звезда»).

Образование полной звезды

Благодаря такой организации подключения контактов получается семипроводная схема (в отличие от 10-ти контактной). В заключение следует напомнить, что при подключении через ТТ важен грамотный выбор его типа.

Правильно выбрать трансформатор тока, значит, принять в расчет, что максимально допустимое токовое значение во вторичной обмотке не может превышать 40% от номинала, а минимальное – 5%. Все подключаемые к счётчику фазные напряжения должны следовать в определенном порядке, который контролируется посредством специального прибора (фазометра).

Видео

Источник: https://amperof.ru/elektroenergia/schetchik/podklyuchenie-trehfaznogo-transformatory-toka.html

Трансформаторы тока для электросчетчиков — характеристики и варианты подключения

При эксплуатации энергетических систем разного типа часто возникают ситуации, требующие осуществить перевод электрических величин в аналоги с определенными соотношениями.

Трансформаторы тока для электросчетчиков позволяют значительно расширить стандартные пределы измерений приборами учёта.

Номинальное напряжение трансформатора тока

Одним из основных параметров, относящихся к трансформаторам тока для электрических счётчиков, является уровень номинального напряжения, который указывается в паспорте на прибор. Номинальные значения напряжения варьируется от 0.66кВт до 1150кВт:

  • 0,66 кВт;
  • 6.0 кВт;
  • 10 кВт;
  • 15 кВт;
  • 20 кВт;
  • 24 кВт;
  • 27 кВт;
  • 35 кВт;
  • 110 кВт;
  • 150 кВт;
  • 220 кВт;
  • 330 кВт;
  • 500 кВт;
  • 750 кВт;
  • 1150 кВт.

Номинальные значения уровня первичного тока на электрической цепи обозначают токовые показатели на первичной трансформаторной обмотке.

Параметры вторичного номинального тока — это стандартные показатели на обмотке вторичного типа. Определение таких токовых потоков осуществляется по номинальным значениям мощности и напряжения.

При этом первичный тип обмотки подключается к источнику электрической энергии, а замыкание вторичной обмотки приходится на устройства измерительного или защитного типа, с низкими показателями внутреннего сопротивления.

Действующие параметры номинального или линейного напряжения, в условиях которых сохраняется работоспособность измерительного токового трансформатора, обязательно указываются в сопроводительной документации и отражены в таблице для прибора.

Класс точности

При правильном выборе токового трансформаторного устройства у потребителя появляется реальная возможность подключать измерительные и защитные приборы к высоковольтным электрическим линиям. Уровень класса точности – одна из наиважнейших характеристик, указывающих на измерительную погрешность, которая не должна быть выше, чем параметры по нормативным документам.

Класс точности определяется несколькими основными факторами, включая погрешности по току и углу, а также показатели относительной полной погрешности. Первые два понятия всегда характеризуются током намагничивания.

Принцип работы трансформатора тока

В приборах промышленного назначения используется несколько классов точности:

В соответствии с действующим на сегодняшний день в нашей стране ГОСТом, класс точности должен быть ориентирован на токовые погрешности, поэтому для показателей в ±40′ предполагается класс 0.5, а для ±80′ – класс 1.0. Следует отметить, что классы 3.0 и 10Р по существующим правилам не нормируются.

Важно

Наличие в маркировке буквенного обозначения «S» свидетельствует о классе точности в пределах 0.01-1.2.

Класс 10Р используется в защитных цепях, а нормирование осуществляется в соответствии с относительной полной погрешностью не более десяти процентов.

Допускается применение приборов с классом точности 1.0, но только если электрический счетчик обладает классом точности в две единицы.

Измерительно-информационная система, представленная устройствами, выполняющими приём, обработку и передачу данных, а также приборами учёта, способна формировать корректные показатели только при высокой точности токовых трансформаторов.

Для учёта в коммерческой сфере уровень класса точности должен составлять 0.5S, а для учёта технического – 1.0S.

Номинальный ток вторичной обмотки

Строение вторичной обмотки у токовых трансформаторов, которые предназначены для напряжения не более тысячи вольт, имеет некоторые отличия. На высоковольтном приборе устанавливается как минимум две вторичные обмотки.

Принцип их действия аналогичен функционированию повышающего трансформатора. Вне зависимости от уровня мощности первичной обмотки, номинальные показатели тока на вторичной обмотке, как правило, стабильно составляют 5А.

Конструкция трансформатора тока

Номинальные значения вторичного тока «I2н» указываются в таблице прилагаемого к устройству паспорта. Номинальные токи на вторичной обмотке равны единице или 5А, но вторые показатели допускаются исключительно в устройствах с первичными токами, не превышающими 4000А.

Однако, допускается также изготовление современных токовых трансформаторных приборов по индивидуальным заказам с номинальными показателями токов вторичного типа на уровне 2.0А или 2,5А.

Номинальный ток первичной обмотки

В зависимости от конструкционных особенностей первичной обмотки, трансформаторы тока могут быть не только многовитковыми, но также одновитковыми и шинными.

На сегодняшний день наибольшее распространение получил второй вариант исполнения устройства.

Одновитковые модели токовых трансформаторов представлены разновидностями, не имеющими индивидуальную первичную обмотку или с наличием индивидуальной обмотки первичного типа.

Читайте также:  Возникла проблема при подключении двухклавишного выключателя на туалет и ванну

Для одновитковых моделей без собственной первичной обмотки характерно встроенное, шинное или разъемное выполнение. Первичный токовый уровень, в этом случае, всегда определяется в соответствии со стандартизированными номинальными токами.

Токи номинальные первичного типа «I1н» указываются в паспортных табличных данных трансформаторного прибора, и определяют стандартные коэффициенты трансформации в виде соотношения номинальных токовых показателей на двух видах обмотки устройства.

Подбирать коэффициент трансформации необходимо в строгом соответствии с расчетной нагрузкой, а также с обязательным учетом возможности функционирования установленного устройства в аварийных ситуациях. Токовый номинал на первичной обмотке не может быть меньше, чем максимальные рабочие значения тока эксплуатируемой электрической установки: I2ном.тт>Imах.эу.

Допускается использовать приборы, имеющие завышенные показатели коэффициента при условии максимального уровня нагрузки присоединения тока на вторичной обмотке в 40% и более от номинального тока электросчетчика. Требования при минимальной рабочей нагрузке составляют 5% или более.

Схема подключения

Рассмотрим, как подключить трансформатор тока. В зависимости от конструктивных особенностей трансформатора тока для электрических счётчиков различается несколько видов таких приборов:

  • токовые трансформаторы, предназначенные для наружного монтажа в ОРУ;
  • токовые трансформаторы, предназначенные для закрытого монтажа распределительных устройств;
  • токовые трансформаторы встроенного типа;
  • токовые трансформаторы, предназначенные для монтажа на изоляторы проходного типа;
  • токовые трансформаторы в переносном или мобильном исполнении.

Токовыми трансформаторами обеспечивается полноценная изоляция эксплуатируемых силовых электрических цепей. Измерительное устройство в быту – гарантия безопасной работы, поэтому специалисты рекомендуют использовать так называемую гальваническую развязку. К недостаткам этого способа установки можно отнести достаточно большое количество электропроводов.

Подключение счетчика электрической энергии через токовые трансформаторы осуществляется посредством десятижильных кабелей. В конструкции применяются раздельные цепи, как на ток, так и напряжение. Стандартная схема установки предполагает обязательное подсоединение трех элементов электросчетчика с соблюдением правил полярности при прямом чередовании фаз относительно «U».

Схема подключения электросчетчика через трансформаторы тока

В процессе самостоятельного монтажа измерительных приборов электрической энергии, токовые трансформаторы подключаются к цепным разрывам при помощи специальных, очень удобных в применении зажимов «Л-1» и «Л-2».

Видео на тему

Источник: https://proprovoda.ru/elektrooborudovanie/transformatory/toka-dlya-elektroschetchikov.html

Выбор трансформаторов тока в цепях учёта (стр. 1 из 2)

Задание

Часть 1. Проверка правильности выбора трансформатора тока

Часть 2. Расчет нагрузки трансформатора тока

Часть 3.Расчет экономии электроэнергии, затрачиваемой на освещение

1. Проверка правильности выбора трансформатора тока

Проверить правильно ли выбраны трансформаторы тока при выполнении учета электроэнергии на силовом трансформаторе.

Задача 1. Необходимо выполнить учет электроэнергии на силовом трансформаторе 250 кВА, 10/0,4 кВ . Мощность нагрузки трансформатора изменяется от 70 кВА до номинальной.

Ячейка трансформатора оборудована трансформаторами тока с К1 =75/5 (коэффициент трансформации в виде отношения номинальных первичного и вторичного токов).

Требуется проверить их пригодность (правильно ли выбраны ТТ).

Номинальный первичный ток трансформатора по стороне 10 кВ

=250/(√3∙10)=25/√3=14,43 А

Ток минимальной нагрузки

=70/(√3∙10)=7/√3=4,04 А

Вторичный ток при номинальной нагрузке

=14,43∙5/75=0,96 А

Согласно ПУЭ при максимальной нагрузке присоединения вторичный ток должен составлять не менее 40% от номинального тока счетчика. Номинальный вторичный ток равен 5А.

5А-100%

0,96А-х% 5/100=0,96/х 5*х=0,96*100 х=96/5 х=19,2

Отношение вторичного тока к номинальному в процентах составит:

(0,96/5)∙100%=19,255% – условие выполняется, но можно лучше

Таким образом, трансформатор тока нужно заменить трансформатором тока 30/5.

Тогда вторичный ток при номинальной нагрузке

=14,43∙5/30=72,15/30=2,405 А

А отношение вторичного тока к номинальному в процентах составит:

(2,405/5)∙100%=48,1>40% – условие выполняется

Вторичный ток при минимальной нагрузке

=4,04∙5/30=20,2/30=0,67 А

Отношение вторичного тока к номинальному в процентах составит:

(0,67/5))∙100%=0,135*100=13,5>5% – условие выполняется

Вывод: Трансформатор тока представляет собой вспомогательный аппарат, в котором вторичный ток практически пропорционален первичному току и предназначенный для включения измерительных приборов и реле в электрические цепи переменного тока.

Трансформаторы тока служат для преобразования тока любого значения и напряжения в ток, удобный для измерения стандартными приборами (5 А), питания токовых обмоток реле, отключающих устройств, а также для изолирования приборов и обслуживающего их персонала от высокого напряжения.

Совет

Обычно трансформатор тока выбирается с условием, чтобы его вторичный ток не превышал 110% номинального.

С другой стороны, трансформаторы тока, выбранные с завышенными коэффициентами трансформации с учетом тока КЗ, при малых вторичных токах имеют повышенные погрешности.

Согласно ПУЭ при максимальной нагрузке присоединения вторичный ток должен составлять не менее 40% от номинального тока счетчика, а при минимальной – не менее 5%.

Таким образом трансформатор тока был выбран неправильно. Так как номинальный ток вторичной обмотке указан в паспортной табличке и равен 5А, то обратимся к принятой для ТТ шкале номинальных первичных токов: 1,5,10,15,20,30,40,50,75 и т.д. Выбрав вторичный ток = 30А получаем трансформатор с коэффициентом трансформации К=30/5

2. Расчет нагрузки трансформатора тока

Определить нагрузку на трансформатор напряжения и падение напряжения в кабеле. Сравнить с допустимыми значениями.

Для трехфазного трансформатора напряжения определяется мощность нагрузки SТН каждой из фаз по формуле

где- наибольшая и наименьшая мощности междуфазной нагрузки

Из трех вычисленных таким образом нагрузок берется наибольшая SТНmax , и проверяется неравенство.

Наиболее загружена фаза с . Мощность ее нагрузки

Расчетная нагрузка трансформатора напряжения,

т.е. не превышает допустимую.

Сопротивление соединительных проводов определяется по формуле

где ℓ – длина провода между трансформатором тока и счетчиком, м; γ – удельная проводимость; для меди γ = 53 м/(Ом·мм2 ), для алюминия γ = 32 м/(Ом·мм2 ); s- сечение провода, мм2 .В токовых цепях сечение медных проводов должно быть не менее 2,5 мм2 , алюминиевых – не менее 4 мм2 .

Сопротивление алюминиевого провода

Определяется ток нагрузки IТН фазы c:

Ток нагрузки в фазе с

Согласно ПУЭ сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков выбираются таким образом, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения. При номинальном напряжении 100 В потеря напряжения в вольтах численно совпадает с потерей напряжения в процентах.

Определяется падение линейного напряжения ΔU для трехфазного трансформатора напряжения:

Падение напряжения в соединительных проводах

Источник: http://MirZnanii.com/a/323577/vybor-transformatorov-toka-v-tsepyakh-uchyeta

Подключаем электросчетчики через трансформаторы тока

Приборы используют в сетях 380 В для создания работоспособной системы с высоким потреблением энергии. Подключение электросчетчика через трансформаторы тока производят не напрямую, что позволяет измерять показатели, превышающие допустимые.

Тт для электросчетчиков

Принцип работы заключается в создании электричества во вторичной цепи благодаря прохождению электрических зарядов через обмотку трансформатора. Последняя подключается последовательно, благодаря чему начинает работать электромагнитная индукция, создающая электрические заряды.

Большинство преобразователей рассчитано на рабочую частоту 50 Гц с номинальным током 5 А. Устройство преобразовывает первичный заряд в безопасный для работы измерителя. Для получения реального результата требуется умножить показания счетчика на коэффициент трансформации. Это позволяет использовать прибор с низкой номинальной мощностью.

Обратите внимание

Устройство обладает недостатком: измерительный ток может быть ниже стартового — тогда показания не будут сняты. Подобный эффект имеет место при установке старых счетчиков, потребляющих электроэнергию. Современные модели используют электричество для работы, но в минимальных количествах.

Провод, использующийся для обмотки вторичной токовой цепи, должен иметь площадь более 2,5 мм² в поперечном сечении. Подключение происходит через опломбированный клеммник. Он позволяет:

  • сменить неисправное устройство, не останавливая подачу электричества к потребителям;
  • произвести технический осмотр.

Соединения выполняются маркированными проводниками. Каждый выход обозначается отдельным цветом, что облегчает будущий ремонт.

Перед подключением необходимо ознакомиться с паспортом, в котором указаны все необходимые сведения.

Подключение измерительного прибора через ТТ

При включении преобразователя обязательно соблюдение полярности. На картинках, представленных ниже, входные клеммы обозначены как Л1 и Л2, а измерительные — как И1 и И2. Обязательно использование проводника, подходящего к системе по допустимой нагрузке.

Существует две основных схемы. В паспорте устройства указана рекомендуемая. Большинство приборов не рассчитано на прямое включение.

К одному устройству запрещается подключать несколько преобразователей с разными коэффициентами.

Схематичные варианты монтажа

Схемы подключения трехфазных счетчиков через трансформаторы тока представлены на картинках:

  • Семипроводная опасна для цепи, поскольку оба проводника связаны под общим напряжением.
  • Десятипроводная отличается отсутствием связи между цепями, что делает систему безопаснее.

Большинство трехфазных счетчиков подключают по второй схеме, если система не требует иного.

Переходная испытательная коробка для электросчетчиков

Как подключить трехфазный счетчик через трансформаторы тока при использовании испытательной коробки показано на схеме ниже. Согласно пункту 1.5.23 ПУЭ, она используется при использовании образцового электросчетчика. Наличие коробки позволяет производить манипуляции над системой без снятия нагрузки на сеть. Могут быть произведены:

  • шунтирование;
  • отключение проводников;
  • включение нового прибора без предварительного отключения;
  • пофазное снятие напряжения.

В основе схемы лежит десятипроводной тип подключения. Отличие заключается в размещении испытательной коробки между ТТ и счетчиком, а также усложнении монтажа.

Выбор трансформатора

Чтобы выбрать устройство, нужно ознакомиться с пунктом 1.5.17 ПУЭ. В нем указано, что расход вторичной обмотки не должен падать ниже 40% от номинального при максимальной загруженности, ниже 5% при минимальной. Необходимо создать правильную последовательность фаз A, B, C. Для определения используют фазометр.

Вместо трехфазного электросчетчика можно установить три однофазных. К каждому потребуется отдельный преобразователь, что многократно усложняет монтаж.

Для чего используют

Трансформаторы применяют для защиты от перегорания. Трёх фазные счетчики пропускают низкий номинальный ток. Поэтому нельзя измерить энергопотребление системы с десятикратной и большей нагрузкой. Преобразователь позволяет вычислить потребление электричества, затем умножить на коэффициент и получить реальный расход. Умножив на стоимость, человек получает счет за электрическую энергию.

Расчеты нагрузки

В пункте 1.5.1 ПУЭ описаны нормативы, которым должны соответствовать электросчетчик и трансформаторы тока. Описаны нормативные расчетные мощности.

Измерение по нагрузке схоже со следующим(в качестве примера взят ТТ с коэффициентом 200/5, система потребляет 140(14) ампер):

  • номинальная:
    1. 140/40 = 3,5.
    2. 0,05*200/5 = 2.
  • минимальная:
    1. 14/40 = 0,35.
    2. 5*0,05 = 0,25.
  • 25%:
    1. 140*0,25/40 = 0,875.
    2. 0,05 А умножают на отношение номинального к минимальному: 0,05*140/14 = 0,5.

Первые числа должны быть соответственно больше вторых.

Выбирая преобразователь, следует учитывать следующие факторы:

  1. Определяя размеры проводки, учитывают класс точности ТТ. Для 0.5 допустимая потеря напряжения составляет четверть процента, для 1.0 — половина процента. В технических электросчетчиках допускается падение напряжения на величину до 1,5%.
  2. В АИИС КУЭ используют высокоточные устройства класса S. ТТ подобного типа способны снимать точные показания при низком уровне тока.
  3. Для технического учета и для счетчиков с классом точности 2.0 нужны ТТ с показателем 1.0. В остальных случаях рекомендуют устанавливать ТТ с классом точности 0.5 или менее.
  4. Прибор с повышенным коэффициентом используется, если максимальный показатель системы не падает ниже 40% от номинального, указанного на устройстве.
  5. Во время расчета потребления электроэнергии учитывают площадь сечения проводки, расчетную мощность и коэффициент преобразователя.

Источник: https://okommunalke.ru/schetchiki/podklyuchaem-cherez-transformatory-toka

Ссылка на основную публикацию
Adblock
detector