Схема подключения стабилизатора напряжения. Пошаговая инструкция. Ошибки и правила
Стабилизаторы напряжения приобретают не от хорошей жизни, и раз вы это сделали, то у вас, скорее всего уже есть или были проблемы с напряжением.
Стандартный уровень напряжения согласно норм, должен быть 230 вольт (не 220, как многие до сих пор считают).
Но в зависимости от места проживания (протяженность и загруженность линий электропередач) и возможных аварий в электросетях (обрыв нулевого провода, перегрузка), напряжение может быть либо стабильно заниженным-повышенным, либо просто ”скакать” в произвольных величинах.
Когда приобретается маленький аппарат для защиты одного конкретного прибора – компьютер, холодильник, телевизор, котел, то с подключением проблем не возникает.
На стабилизаторе имеется вилка и розетка. Тут разберется даже школьник.
А вот если вы хотите установить мощный аппарат, для защиты электроприборов всего дома одновременно, тогда придется повозиться со схемой подключения.
Помимо самого стабилизатора, вам понадобится ряд дополнительных материалов:
- трехжильный кабель ВВГнГ-Ls
Сечение провода должно быть точно таким же, как и на вашем вводном кабеле, который приходит на рубильник или автомат главного ввода. Так как через него будет идти вся нагрузка дома.
- выключатель трехпозиционный
Данный выключатель в отличие от простых, имеет три состояния:
1включен потребитель №1 2выключено 3включен потребитель №2
Можно использовать и обычный модульный автомат, но при такой схеме, если понадобится отключиться от стабилизатора, придется каждый раз полностью обесточивать весь дом и перекидывать провода.
Есть конечно же режим байпас или транзит, но чтобы перейти на него, нужно соблюдать строгую последовательность. Подробнее об этом будет сказано ниже.
С данным переключателем, вы одним движением целиком отсекаете агрегат, а дом остается со светом напрямую.
- провод ПУГВ разных цветов
Вы должны четко понимать, что стабилизатор напряжения устанавливается строго до электросчетчика, а не после него.
Ни одна энергоснабжающая организация вам не разрешит подключиться по другому, как бы вы не доказывали, что тем самым, кроме эл.оборудования в доме, вы хотите защитить и сам прибор учета.
Стабилизатор имеет свой холостой ход и также потребляет эл.энергию, даже работая без нагрузки (до 30Вт/ч и выше). И эта энергия должна быть учтена и подсчитана.
Второй важный момент – крайне желательно, чтобы в схеме до места подключения прибора стабилизации было либо УЗО, либо дифф.автомат.
Это рекомендуют все производители популярных марок Ресанта, Sven, Лидер, Штиль и т.п. Это может быть вводной дифф.автомат на весь дом, не важно. Главное, чтобы само оборудование было защищено от утечек тока.
В ниже описываемом способе как раз и будет рассматриваться такой вариант. Ведь очень часто эти аппараты вешают на стене в комнатах, прихожих, в свободном доступе для прикосновения.
А пробой обмоток трансформатора на корпус, не такая уж и редкая вещь.
Первым делом монтируете в электрощитке, сразу после вводного автомата трехпозиционный переключатель.
- в первом положении, когда язычок поднят вверх, напряжение будет подаваться в дом напрямую с электросети, без задействования стабилизатора
Вдруг он у вас вышел из строя или нужно провести какие либо ревизионные работы. Не будете же каждый раз откидывать провода и обесточивать всю квартиру.
- во втором положении II (язычок автомата смотрит вниз) – эл.снабжение будет идти через стабилизатор
- положение “0” – все электроприборы отключены, как от стабилизатора, так и от внешней сети
Выбираете место установки стабилизатора напряжения. Ставить где попало его тоже нельзя. Существуют определенные правила, которых следует придерживаться.
Прокладываете от щитка до этого места два кабеля ВВГнГ-Ls.
Каждый из них желательно промаркировать и сделать соответствующие надписи с обоих концов:
- выход из стабилизатора
Снимаете изоляцию с жил и сначала подключаете кабель в электрощитке. Фазу с того провода, что идет на вход стабилизатора, подсоединяете к выходным зажимам вводного автомата.
Далее разбираетесь с кабелем стабилизатор-выход. Фазную жилу (пусть это будет белый провод), подключаете к контакту №2 на трехпозиционном выключателе.
Ноль и землю с обоих кабелей сажаете на соответствующие шинки.
Теперь нужно подать фазу непосредственно с вводного автомата на трехпозиционный. Зачищаете монтажный провод ПУГВ, оконцовываете жилы наконечниками НШВИ и заводите его с фазного выхода вводного автомата на зажим №4 выключателя.
Все что остается сделать в щитке – запитать все автоматы с клеммы №1 трехпозиционника.
Проделываете эту операцию опять же гибкими монтажными проводами.
Таким образом по схеме вы подали фазу с вводного автомата на 3-х позиционный, а уже далее через его контакты распределили нагрузку, путем подключения через стабилизатор (контакт №2-№1) и напрямую без него (контакт №4-№1).
В вашем конкретном случае данные номера контактов могут не совпадать с указанными здесь цифрами! Обязательно уточняйте все в инструкции или в паспорте на автомат.
Теперь переходим к непосредственному подключению самого стабилизатора. Для того, чтобы подобраться к его контактам, может понадобиться снять внешнюю крышку.
Пропускаете два кабеля (вход и выход) через отверстия и зажимаете под клеммы по следующей схеме:
- фазную жилу входного кабеля стабилизатора затягиваете на клемме ВХОД (Lin)
- нулевую жилу (синего цвета) к клемме N (Nin)
- заземляющую жилу к винтовому зажиму с обозначением ”земля”
Кстати, отдельной клеммы ”земля” может и не быть. Тогда данную жилу закручиваете под винт на самом корпусе аппарата.
Есть модели с клеммниками всего под 3 провода. В них назад возвращается только фаза.
Ноль на питание электроприборов берется с общего щитка.
Теперь когда вы подали напряжение от щитка до стабилизатора, вам нужно вернуть это напряжение, но уже стабилизированное обратно в общий щит.
Для этого подсоединяете кабель – выход со стабилизатора.
- его фазную жилу к зажиму ВЫХОД (Lout)
- жилу заземления, туда же где и заземляющая жила от входного кабеля
Еще раз визуально проверяете всю схему и закрываете крышку.
Первое включение нужно осуществлять без нагрузки. То есть все автоматы кроме вводного и того, что идет на стабилизатор должны быть отключены.
Запускаете его на холостой ход и контролируете работу. Входные и выходные параметры, нет ли посторонних шумов или писка.
Также не помешает проверить правильность и точность тех.данных, что высвечиваются на электронном табло.
Если у вас дома трехфазная сеть 380В, то для такого подключения рекомендуется использовать 3 однофазных стабилизатор напряжения, с подключением каждого по отдельной фазе.
Более подробно о преимуществах трехфазных и однофазных аппаратов и когда какой нужно выбирать, можно ознакомиться в статье ”Как выбрать стабилизатор напряжения для дома”.
1Неправильное расположение и место установки
У вас может быть все идеально подключено и соблюдена схема, но стабилизатор будет постоянно греться и отключаться, либо на его табло выскакивать ошибки.
О том, где можно, а где ни в коем случае нельзя располагать данный прибор подробно читайте в статье ”Где устанавливать стабилизатор напряжения в доме”.
2Подключение через простой автомат, а не трехпозиционный
Безусловно, данный пункт и ошибкой то трудно назвать. Тем более 90% потребителей именно так и делают.
Дело в том, что переключение стабилизатора напряжения из обычного режима в режим “транзит”, должно выполняться с определенной последовательностью.
Потом сам переключатель переводите в положение ТРАНЗИТ или БАЙПАС.
И только затем снова включаете автоматы.
Многие забывают об этом и делают переключение под нагрузкой. Что в итоге приводит к поломкам.
С 3-х позиционным автоматом такое исключено. Вы автоматически переключаете напряжение, без каких либо манипуляций на стабилизаторе. И все это одной клавишей!
Никакой последовательности запоминать не нужно. Так что данную процедуру можно смело доверять любому члену семьи.
3Использование для подключения кабеля меньшего сечения чем вводной
Вы можете выбирать меньшее сечение, только когда запитываете отдельные электроприемники.
Если же у вас на стабилизаторе сидит весь дом, то будьте добры соблюдать параметры по вводу согласно всей общедомовой нагрузке.
4Отсутствие наконечников на многожильных проводах
Почему-то многие забывают, что зачастую через стабилизатор проходит вся нагрузка вашего дома. Ровно такая же как и на вводом автомате.
При этом в электрощите все провода обжаты, даже на выключателях освещения с минимальными токами, а вот на клеммниках стабилизатора или его автоматах, постоянно можно встретить голый провод просто поджатый винтом.
Поэтому не скупитесь, и заранее вместе с аппаратом приобретайте соответствующие наконечники.
Иногда после подключения стабилизатора, начинает выбивать вводной автомат. При этом без стабилизатора, все нормально и ничего не отключается.
Многие сразу грешат на неправильную схему подключения или дефект аппарата. Везут его на гарантийный ремонт и т.п.
А причина может быть совсем в другом. Если у вас через чур низкое напряжение 150-160В, то при его повышении до стандартных 220-230В, ток в сети значительно вырастет.
Отсюда и все проблемы. Обращайте на это внимание, прежде чем нести его обратно в магазин.
Источники – https://cable.ru, Кабель.РФ
Источник: https://domikelectrica.ru/sxema-podklyucheniya-stabilizatora-napryazheniya/
FAQ Че ставить-то? Стабилизатор напряжения или тока? Мотаем на ус! — Сообщество «Электронные Поделки» на DRIVE2
Каждый раз, читая новые записи в блогах сообщества я сталкиваюсь с одной и той же ошибкой — ставят стабилизатор тока там, где нужен стабилизатор напряжения и наоборот.
Постараюсь объяснить на пальцах, не углубляясь в дебри терминов и формул. Особенно будет полезно тем, кто ставит драйвер для мощных светодиодов и питает им множество маломощных.
Для вас — отдельный абзац в конце статьи. =)
Картинка для привлечения внимания. Думается, что тут все запитано абсолютно правильно =)
Сразу хочу извиниться перед всеми, чьи рисунки вдруг попадут в эту статью. Спасибо за труд, отмечайтесь в комментариях. Я добавлю авторство, если нужно.
Для начала разберемся с понятиями:
СТАБИЛИЗАТОР НАПРЯЖЕНИЯИсходя из названия — стабилизирует напряжение.
Если написано, что стабилизатор 12В и 3А, то значит стабилизирует именно на напряжение 12В! А вот 3А — это максимальный ток, который может отдать стабилизатор. Максимальный! А не «всегда отдает 3 ампера».
То есть от может отдавать и 3 миллиампера, и 1 ампер, и два… Сколько ваша схема кушает, столько и отдает. Но не больше трех.
Собственно это главное.
Когда-то они были такие и подключали к ним телевизоры…
И теперь я перейду к описанию видов стабилизаторов напряжения:
Линейные стабилизаторы (те же КРЕН или LM7805/LM7809/LM7812 и тп)
Вот она — LM7812. Наш советский аналог — КРЕН8Б
Самый распространенный вид. Они не могут работать на напряжении ниже, чем указанное у него на брюхе. То есть если LM7812 стабилизирует напряжение на 12ти вольтах, то на вход ему подать нужно как минимум примерно на полтора вольта больше.
Если будет меньше, то значит и на выходе стабилизатора будет меньше 12ти вольт. Не может он взять недостающие вольты из ниоткуда. Потому и плохая это идея — стабилизировать напряжение в авто 12-вольтовыми КРЕНками. Как только на входе меньше 13.
5 вольт, она начинает и на выходе давать меньше 12ти.
Еще один минус линейных стабилизаторов — сильный нагрев при хорошей такой нагрузке. То есть деревенским языком — все что выше тех же 12ти вольт, то превращается в тепло. И чем выше входное напряжение, тем больше тепла.
Вплоть до температуры жарки яичницы. Чуть нагрузили ее больше, чем пара мелких светодиодов и все — получили отличный утюг.
Импульсные стабилизаторы — гораздо круче, но и дороже. Обычно для рядового покупателя это уже выглядит как некая платка с детальками.
Например вот такая платка — импульсный стабилизатор напряжения.
Бывают трех видов: понижающие, повышающие и всеядные. Самые крутые — всеядные. Им все равно, что на входе напряжение ниже или выше нужного. Он сам автоматом переключается в режим увеличения или уменьшения напряжения и держит заданное на выходе.
И если написано, что ему на вход можно от 1 до 30 вольт и на выходе будет стабильно 12, то так оно и будет.Но дороже. Но круче. Но дороже…Не хотите утюг из линейного стабилизатора и огромный радиатор охлаждения впридачу — ставьте импульсный.
Какой вывод по стабилизаторам напряжения?
ЗАДАЛИ ЖЕСТКО ВОЛЬТЫ — а ток может плавать как угодно (в определенных пределах конечно)
СТАБИЛИЗАТОР ТОКАВ применении к светодиодам именно их еще называют «светодиодный драйвер». Что тоже будет верно.
Вот, к примеру, готовый драйвер. Хотя сам драйвер — маленькая черная восьминогая микросхема, но обычно драйвером называют всю схему сразу.
Задает ток. Стабильно! Если написано, что на выходе 350мА, то хоть ты тресни — будет именно так. А вот вольты у него на выходе могут меняться в зависимости от требуемого светодиодам напряжения.
То есть вы их не регулируете, драйвер сделает все за вас исходя из количества светодиодов.Если очень просто, то описать могу только так. =)А вывод?
ЗАДАЛИ ЖЕСТКО ТОК — а напряжение может плавать.
Теперь — к светодиодам. Ведь весь сыр-бор из-за них.
Светодиод питается ТОКОМ. Нет у него параметра НАПРЯЖЕНИЕ. Есть параметр — падение напряжения! То есть сколько на нем теряется.Если написано на светодиоде 20мА 3.4В, то это значить что ему надо не больше 20 миллиампер. И при этом на нем потеряется 3.4 вольта.
Не для питания нужно 3.4 вольта, а просто на нем «потеряется»!То есть вы можете питать его хоть от 1000 вольт, только если подадите ему не больше 20мА. Он не сгорит, не перегреется и будет светить как надо, но после него останется уже на 3.4 вольта меньше. Вот и вся наука.
Ограничьте ему ток — и он будет сыт и будет светить долго и счастливо.
Вот берем самый распространненый вариант соединения светодиодов (такой почти во всех лентах используется) — последовательно соединены 3 светодиода и резистор. Питаем от 12 вольт.
Резистором мы ограничиваем ток на светодиоды, чтобы они не сгорели (про расчет не пишу, в интернете навалом калькуляторов).После первого светодиода остается 12-3.4= 8.6 вольт.Нам пока хватает.На втором потеряется еще 3.4 вольта, то есть останется 8.6-3.4=5.2 вольта.
И для третьего светодиода тоже хватит.А после третьего останется 5.2-3.4=1.8 вольта.И если захотите поставить четвертый, то уже не хватит.
Вот если запитать не от 12В а от 15, то тогда хватит. Но надо учесть, что и резистор тоже надо будет пересчитать. Ну вот собственно и пришли плавно к…
Простейший ограничитель тока — резистор. Их часто ставят на те же ленты и модули. Но есть минусы — чем ниже напряжение, тем меньше будет и ток на светодиоде. И наоборот.
Поэтому если у вас в сети напряжение скачет, что кони через барьеры на соревнованиях по конкуру (а в автомобилях обычно так и есть), то сначала стабилизируем напряжение, а потом ограничиваем резистором ток до тех же 20мА. И все.
Нам уже плевать на скачки напряжения (стабилизатор напряжения работает), а светодиод сыт и светит на радость всем.
То есть — если ставим резистор в автомобиле, то нужно стабилизировать напряжение.
Можно и не стабилизировать, если вы расчитаете резистор на максимально-возможное напряжение в сети автомобиля, у вас нормальная бортовая сеть (а не китайско-русский тазопром) и сделаете запас по току хотя бы в 10%.
Ну и к тому же резисторы можно ставить только до определенной величины тока. После некоторого порога резисторы начинают адски греться и приходится их сильно увеличивать в размерах (резисторы 5Вт, 10Вт, 20Вт и тд).
Плавно превращаемся в большой утюг.
Есть еще вариант — поставить в качестве ограничителя что-нибудь типа LM317 в режиме токового стабилизатора.
LM317. Внешне как и LM7812. Корпус один, смысл несколько разный.
Но и они тоже греются, ибо это тоже линейный регулятор (помните я писал про КРЕН в абзаце о стабилизаторах напряжения?). И тогда создали…
Импульсный стабилизатор тока (или драйвер).
Вот такой маленький может быть драйвер.
Он в себе включает сразу все что надо. И почти не греется (только если дико перегрузить или неправильно собрана схема). Поэтому обычно и ставят их для светодиодов мощнее 0.5Вт. Самый греющийся элемент во всей схеме — это сам светодиод. Но ему на роду пока написано — греться. Главное не перегреваться выше определенной температуры. А то если перегреть, то дико начинает деградировать кристалл светодиода и он тускнеет, начинает менять цвет и тупо умирает (привет, китайские лампочки!).
Ну а в заключении — к тому, что постоянно пытаюсь доказать в дискуссиях. И доказываю. Вот только каждому отдельно объяснять одно и то же — язык отвалится. Поэтому попробую еще раз в этой статье.
Постоянно наблюдаю такую картину — задают ток драйвером для мощных светодиодов (скажем — 350мА) и ставят несколько веток светодиодов без ограничительных резисторов и прочего. И ведь люди, то вроде бы и не самые ламеры, а совершают одну и ту же ошибку раз за разом. Рассказываю, почему это плохо и к чему может привести:
Из закона Ома для полной цепи:
Сила тока в неразветвленной цепи равна сумме сил тока на ее параллельных участках.Многие так и считают — «каждая ветка по 20мА, у меня 20 веток. Драйвер отдает 350мА, значит на каждую ветку придется даже меньше — по 17.5мА. Бинго!»
А вот и не Бинго!, а Жопа! Почему?
Сила тока в каждой ветке будет равна, если у вас идеальнейшие светодиоды с абсолютно одинаковыми параметрами. Тогда и ток будет во всех ветках одинаков, и никаких ограничителей тока не надо — взяли и поделили общий ток на количество одинаковых веток. Но такое — только в сказках.Если параметры чуть-чуть отличаются — получили в одной ветке 19мА, в другой 17, в третьей 20…
Общее количество тока так и остается неизменным — 350мА, а вот в ветках творится безумная кака. На взгляд и не определишь, вроде светят одинаково… И вот у вас одна ветка, самая прожорливая, начинает греться сильнее остальных. И жрать больше. И греться еще сильнее. А потом раз — и потухла. И все эти ее миллиамперы разбежались по остальным веткам.
И вот еще одна ветка, недавно вроде нормально горевшая берет и тухнет следом. И уже вдвое больший ток уходит на другие ветки, ведь общий ток жестко задан 350мА.
Процесс лавинообразный и вот уже пришел кирдык всей этой схеме, потому что все 350мА усосались в оставшиеся светодиоды и никто-никто их не спас… А стояли бы, как полагается, по отдельному стабилизатору (хотя бы банальному резистору) на каждой ветка — работала бы и дальше.
Вот как раз то, о чем я говорю. На картинке речь о 1Вт-светодиодах, но и с любыми другими картина та же.
Именно это мы и видим в китайских модулях и кукурузинах, которые горят как спички через неделю/месяц работы. Потому что светодиоды имеют адский разброс, а китайцы на драйверах экономят покруче, чем кто либо еще.
Почему не горят фирменные модули и лампы Osram, Philips и тд? Потому что они делают довольно мощную отбраковку светодиодов и от всего дичайшего количества выпущенных светодиодов остается 10-15%, которые по параметрам практически идентичны и из них можно сделать такой простой вид, какой и пытаются сделать многие — один мощный драйвер и много одинаковых цепочек светодиодов без драйверов.
Но только вот в условиях «купил светодиоды на рынке и запаял сам» как правило будет им нехорошо. Потому что даже у «некитая» будет разброс. Может повезти и работать долго, а может и нет.
именно!
Да и токовый драйвер по-сравнению со стабилизатором напряжения и копеечными резисторами как правило дороже. Ну нафига стрелять в мишень для мелкокалиберной винтовки из танка? Цель-то поразим, вопросов нет. Но вместе с ней еще и воронку оставим. =))
Запомните раз и навсегда! Я вас умоляю! =)
Да и просто — сделать правильно и сделать «смотрите как я сэкономил, а остальные — дураки» — это несколько разные вещи. Даже очень сильно разные. Учитесь делать не как пресловутые китайцы, учитесь делать красиво и правильно. Это сказано давно и не мной. Я лишь попробовал в стотыщпятьсотый раз объяснить прописные истины. Уж звиняйте, если криво объяснял =)
Вот прекрасная иллюстрация. Разве вы думаете мне не хотелось сэкономить и уменьшить количество драйверов раза в 3-4? Но так — правильно, а значит будет работать долго и счастливо.
Ну и напоследок тем, кому даже такое изложение было слишком заумным.
Запомните следующее и старайтесь следовать этому (здесь «цепочка» — это один светодиод или несколько ПОСЛЕДОВАТЕЛЬНО-соединенных светодиодов):1.
КАЖДОЙ цепочке — свой ограничитель тока (резистор или драйвер…)2. Маломощная цепочка до 300мА? Ставим резистор и достаточно.3. Напряжение нестабильно? Cтавим СТАБИЛИЗАТОР НАПРЯЖЕНИЯ
4. Ток больше 300мА? Ставим на КАЖДУЮ цепочку ДРАЙВЕР (стабилизатор тока) без стабилизатора напряжения.
Вот так будет правильно и самое главное — будет работать долго и светить ярко!
Ну и надеюсь, что все вышенаписанное убережет многих от ошибок и поможет сэкономить средства и нервы.
Ну ладно, рябятке.Нюансов еще очень много, а я и так уже немаленькую статью-то накатал. Пожалуй все остальное — в комментариях.Засим откланиваюсь,
Всегда ваш — ЛедЗлыдень Борисыч.
PS: И да, для злопыхателей. Этот пост конечно же не о правильном подключении светодиодов, а тупо реклама моего личного блога. Вы как всегда правы, а я как всегда корыстен. Ага (шутка) =)))
Источник: https://www.drive2.ru/c/767179/
Подключение стабилизатора напряжения
Одной из причин по которой бытовая техника и электроприборы преждевременно выходят из строя, является скачкообразные перепады напряжения в электрической сети.
Для предотвращения данных нежелательных ситуаций служат стабилизаторы – защитные устройства, позволяющие защитить бытовое и промышленное оборудование от помех и искажений напряжения.
Защита обеспечивается электронной схемой, отслеживающей значение входного напряжения, которая отключает нагрузку при выходе его за допустимые пределы. Подключение нагрузки происходит при возвращении значений параметров сети в допустимые нормы.
Схема подключения стабилизатора напряжения в сеть 220 В
Подключение стабилизатора напряжения производится при обесточенной сети. Это основное требование техники безопасности. Для его выполнения отключается вводной автомат, расположенный в распределительном шкафу, после чего необходимо окончательно удостоверяются в отсутствии напряжения, используя указатель.
В большинстве случаев включение стабилизатора происходит сразу за счетчиком, на вводе в помещение, перед нагрузкой. Тип включения – последовательный, в разрыв фазного провода. Довольно часто производители электронной продукции обозначают структурную схему стабилизатора на поверхность корпуса.
В стабилизаторе напряжения имеется, как правило, три контакта для подключения:
- – фаза – “вход”;
- – фаза – “выход”;
- – нуль.
Фазный провод от вводного автомата подключается на “вход” стабилизатора. Затем к “выходу” подсоединяется фазный провод нагрузки. К нулевому контакту стабилизатора подсоединяется нулевой провод сети без разрыва.
Чтобы подключить нулевой провод нужно сначала подсоединить его к стабилизатору, а затем к общему нулевому проводу сети (с помощью клеммных соединителей (колодок) или обычной скрутки).
Что делать если на корпусе стабилизатора четыре контакта для подключения?
В некоторых случаях схема стабилизатора напряжения выполнена таким образом, что для подключения его к сети используется не три, а четыре контакта:
- – фаза – “вход”;
- – нуль – “вход”;
- – фаза – “выход”;
- – нуль – “выход”.
В этом случае схема стабилизатора напряжения, по которой он включается в сеть, выполняется следующим образом: фазный и нулевой провод от вводного автомата (электрощита) подсоединяются к соответствующим контактам «вход» на защитном устройстве, а фазный и нулевой провод нагрузки соединяется с контактами «выход».
После монтажа следует тщательно проверить правильность подключения проводов. Перед первым включением устройства (подачей напряжения на вход) необходимо отключить всю нагрузку от его выхода (освещение, вытащить вилки электроприборов с розеток и т.п.).
Включив стабилизатор необходимо проконтролировать его работу, он должен стабильно и нормально работать без постороннего шума, потрескивания и т.п.
Для надежной работы рекомендуется проводить следующую ежегодную профилактическую процедуру – подтягивание винтовых и болтовых соединений. Также данная мера предотвратит возможность пожара или повреждения изоляции, причиной которых может быть плохо затянутый или ненадежный контакт.
Некоторые маломощные стабилизаторы напряжение (P
Источник: http://electricvdome.ru/zachita-ot-perenaprjazhenija/podklyuchenie-stabilizatora-napryazhenija.html
Стабилизаторы напряжения
Стабилизатор напряжения — прибор, который обеспечивает стабильный уровень напряжения, автоматически компенсируя изменения напряжения источника и сопротивления нагрузки. Существует два основных типа стабилизаторов напряжения: параллельные стабилизаторы и последовательные стабилизаторы.
Стабилизация — термин, применяемый для выражения того, насколько хорошо источник электропитания поддерживает постоянное напряжение, подаваемое к нагрузке, независимо от изменений напряжения на входе источника и сопротивления нагрузки. Многие типы электронного оборудования для нормальной работы требуют стабильного уровня напряжения.
Стабилизатор напряжения
Параллельный стабилизатор напряжения
Стабилизатор, установленный параллельно нагрузке. Параллельный стабилизатор состоит из стабилитрона (VR1), ограничивающего ток сопротивления (R1) и сопротивления нагрузки (RL). Сопротивление нагрузки установлено параллельно стабилитрону.
Схема параллельного стабилизатора, соединённого с мостовым выпрямителем
Стабилитрон предназначен для работы с конкретным напряжением, известным как напряжение туннельного пробоя p-n-перехода. Поскольку стабилитрон — активный элемент, он может менять своё внутреннее сопротивление.
Изменения в прохождении тока через стабилитрон не изменяют падение напряжения в нём. Ограничивающее ток сопротивление, установленное в последовательности со стабилитроном, ограничивает величину тока, которое протекает через стабилитрон, и предохраняет его от повреждений.
Падение напряжения в стабилитроне фиксируется посредством самой конструкции стабилитрона и остаётся относительно постоянным. Часть напряжения от источника, которая не снижается стабилитроном, снижается ограничивающим сопротивлением.
Поскольку стабилитрон установлен параллельно сопротивлению нагрузки, напряжение через RL будет равно падению напряжения на стабилитроне.
Последовательный стабилизатор
Это стабилизатор, установленный последовательно по отношению к нагрузке. Последовательный стабилизатор состоит из стабилитрона (VR1), ограничивающего ток сопротивления (R1), и сопротивления нагрузки (RL).
Стабилитрон и ограничивающее ток сопротивление соединены последовательно, чтобы образовался делитель напряжения. База транзистора подсоединена к делителю напряжения. Контур транзистора «эмиттер-коллектор» соединён последовательно с сопротивлением нагрузки.
Схема последовательного стабилизатора, соединённого с мостовым выпрямителем
Поскольку транзистор в последовательном стабилизаторе напряжение, воздействующее на базу транзистора, равно падению напряжения в стабилитроне. Этот потенциал положителен относительно эмиттера транзистора. Так как стабилитрон поддерживает падение напряжения на постоянном уровне, потенциал, воздействующий на базу транзистора, будет оставаться постоянным.
Последовательный стабилизатор поддерживает постоянный уровень напряжения, подаваемого на нагрузку, изменяя величину падения напряжения в транзисторе. Возрастание тока через нагрузку может быть вызвано либо повышением напряжения источника питания, либо снижением сопротивления нагрузки.
Когда ток возрастает, возрастает также и падение напряжения на нагрузке. В результате, напряжение, приложенное к эмиттеру транзистора, возрастает, делая его более положительным.
Это означает, что разность электрических потенциалов между эмиттером и базой становится меньше, поэтому возрастает внутреннее сопротивление транзистора.
Источник: http://kipiavp.ru/pribori/stabilizator-napryajeniya.html
Правильный стабилизатор тока и напряжения — logbook Lada 2115 SkyЛайн 2006 on DRIVE2
В этой статье хочу показать как сделать правильный стабилизатор для светодиодов в машине. Статья предназначена для таких же людей как я которые не шарят в электронике, поэтому буду показывать все наглядно, чтоб не было вопросов.
Данный стабилизатор тока и напряжения предназначен для светодиодов спаянных в цепи только по 3, так как для других случаев компоненты надо подбирать отдельно.Начнем. Необходимые компоненты:— диод 4001— резистор на 2,4 Ом мощность 0,125-0.
5 Вт-2 конденсатора на 300-500 мкф напряжением 16 или 25 В-Стабилизатор КР142ЕН8Б или VC7812CT или L7812-Стабилизатор LM317T или КР142ЕН12А
Необходимые компоненты. Продаются даже у нас, значит должны быть везде.
Сначала припаиваем диод для защиты от обратного тока к стабилизатору из 4ого пункта.
Потом к этому прикрепляем конденсаторы. У конденсаторов всегда есть полоска, так это минус. Этими ножками к средней ножке стабилизатора. Без конденсаторов светодиоды будут мигать
Подключаем проводки. К средней ножке крепим минус (и вход, и выход к той же ножке). К ножке с диодом крепим вход плюса и к оставшейся ножке выход плюса.
Это у нас готовый стабилизатор напряжения. Он всегда при заведенном двигателе будет выдавать 11,85 В. А при выключенном около 10,5 В. Потому что Стабилизатор начинает работать только после 13 В. При зарядке больше 13 В он всегда будет выдавать 11,85 В.
Я эти стабилизаторы использовал для ДХО, поэтому мне не нужно чтоб они горели в полную мощь при выключенном двигателе. Теперь переходим к стабилизатору тока.
Минус который выходит из первого стабилизатора не трогаем, а выход из него цепляем к ножке без резистора. Выход плюса к крайней ножке с резистором.
Ниже пару фоток с разных ракурсов. Вроде все понятно должно быть.
Тут все соединения хорошенько пропаяны и изолированы термотрубкой.
Тоже только с обратной стороны
Тут показано как я все это герметично закрыл. Для этого были куплены термотрубки 20 мм и 35 мм. Отрезаны по размерам и прогреты.
Конечный результат. Теперь это можно воткнуть в любое соединение между светодиодами и питанием
В итоге после первого стабилизатора выходит неограниченный ток и напряжение 11,85 В при напряжении больше 13 В, этим мы ограничили напряжение в любой момент. После второго стабилизатора выходит напряжение 11,45 В при напряжении больше 13 В и ток 0,05 А, этим ограничили ток.
Этого тока хватает для питания 3 светодиодов соединенных последовательно, а таких цепей по 3 светодиода параллельно можно соединить допустим 30 штук. Для других задач можно подобрать другие элементы и собрать аналогичный стабилизатор.Сегодня экспериментировал со стабилизатором. Подбирал резистор для 1 метровой свд ленты.
Если использовать резистор на 22 Ом то светит тускленько(глазом почти не заметно, только если их рядом сравнивать), зато есть запас и он никогда не перегорит.
В итоге с трудом но все же подобрал резистор на 11 Ом. Горит чуть ярче, но тоже не на максимуме, остался минимальный запас. По яркости даже если рядом горят практически одинаково.
Так что можно для любых свд лент этот стабилизатор использовать. Но 5 метровый он наверно не потянет, хотя надо будет попробовать.
Источник: https://www.drive2.com/l/1959159/