Как рассчитать ток кз и ток уставки для автоматического выключателя?

Ток короткого замыкания и его определение. Как рассчитать ток КЗ?

   Здравствуйте, дорогие друзья! В данной статье вы узнаете, что такое ток короткого замыкания, его причины и как его рассчитать.

Короткое замыкание происходит, когда токоведущие части различных потенциалов или фаз, соединяются между собой. Замыкание может образоваться и на корпусе оборудования, имеющем связь с землей.

Данное явление характерно также для электрических сетей и электрических приемников.

Причины и действие тока короткого замыкания  

   Причины возникновения короткого замыкания могут быть самыми различными. Этому способствует влажная или агрессивная среда, в которой значительно ухудшается сопротивление изоляции.

Замыкание может стать результатом механических воздействий или ошибок персонала во время ремонта и обслуживания. Суть явления заключается в его названии и представляет собой укорачивание пути, по которому проходит ток. В результате, ток протекает мимо нагрузки, обладающей сопротивлением.

Обратите внимание

Одновременно, происходит его увеличение до недопустимых пределов, если не сработает защитное отключение.  

   Токи короткого замыкания оказывают на аппаратуру и электроустановки электродинамическое и термическое воздействие, что в конечном итоге, приводит к их значительной деформации и перегреву. В связи с этим, необходимо заранее производить расчеты токов короткого замыкания.  

Как рассчитать ток короткого замыкания в домашних условиях

   Знание величины тока короткого замыкания крайне необходимо для обеспечения пожарной безопасности.

Очевидно, что если измеренный ток короткого замыкания меньше тока уставки максимальной защиты автомата или 4-х кратного значения номинала тока предохранителя, то время срабатывания (перегорания плавкой вставки) будет больше, а это, в свою очередь, может привести к чрезмерному нагреву проводов и их возгоранию.

   Как этот ток определить? Существуют специальные методики и специальные приборы для этого. Здесь рассмотрим вопрос как это сделать, имея лишь мультиметр или даже вольтметр. Очевидно, что этот способ имеет не очень высокую точность, но всё же достаточную для обнаружения несоответствия максимально-токовой защиты к величине этого тока.

   Как это сделать в домашних условиях? Необходимо взять достаточно мощный приёмник, например, электрический чайник или утюг. Ещё неплохо бы иметь тройник.

К тройнику подключаем наш потребитель и вольтметр или мультиметр в режиме измерения напряжения. Записываем установившуюся величину напряжения (U1). Отключаем потребитель, и записываем величину напряжения без нагрузки (U2).

Дальше производим расчёт. Нужно разделить мощность вашего потребителя (P) на разность замеренных напряжений.

                                                                       Iк.з.(1) = Р/(U2 – U1)

   Посчитаем на примере. Чайник 2 кВт. Первый замер – 215 В, второй замер – 230 В. По расчёту получается 133,3 А.

Если стоит, например, автомат ВА 47-29 с характеристикой С, то его уставка будет от 80 до 160 Ампер. Следовательно, возможно, что этот автомат сработает с задержкой.

Важно

По характеристике автомата можно определить, что время срабатывания может быть при этом до 5 секунд. Что в принципе опасно. 

   Что делать? Нужно увеличить величину тока короткого замыкания. Увеличить этот ток можно заменив провода питающей линии на большее сечение.

Полезное КЗ

   Казалось бы, очевидный факт состоит в том, что короткое замыкание – явление крайне скверное, неприятное и нежелательное. Оно может привести в лучшем случае к обесточиванию объекта, отключению аварийной защитной аппаратуры, а в худшем – к выгоранию проводки и даже пожару.

Следовательно, все силы нужно сосредоточить на том, чтобы избежать этой напасти. Однако расчет токов короткого замыкания имеет вполне реальный и практический смысл. Изобретено немало технических средств, работающих в режиме высоких токовых значений.

Примером может служить обычный сварочный аппарат, особенно дуговой, замыкающий в момент эксплуатации практически накоротко электрод с заземлением. Другой вопрос состоит в том, что режимы эти носят кратковременный характер, а мощность трансформатора позволяет выдерживать эти перегрузки.

При сварке в точке касания окончания электрода проходят огромные токи (они измеряются в десятках ампер), в результате чего выделяется достаточно тепла для местного расплавления металла и создания прочного шва.

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Источник: https://powercoup.by/stati-po-elektromontazhu/tok-korotkogo-zamyikaniya

Выбор защитной и коммутационной аппаратуры. Расчет номинального тока

Проектирование электроустановок квартир и коттеджей (Schneider Electric)

4.1. Общие принципы выбора защитной аппаратуры

Любая электроустановка должна быть защищена устройствами автоматического отключения в случае появления сверхтоков или недопустимых токов утечки. Под сверхтоком понимается любой ток, превышающий номинальный. В основном сверхтоки появляются вследствие перегрузки или короткого замыкания.

Устройства защиты должны выбираться с учетом параметров электроустановки, ожидаемых токов короткого замыкания, характеристик нагрузки, условий прокладки и тепловых характеристик проводников.

В соответствии с ПУЭ для электроустановок напряжением до 1 кВ и с системой заземления TN, характеризующейся глухозаземленной нейтралью источника питания и присоединением открытых токопроводящих частей к глухозаземленной нейтрали источника посредством нулевых защитных проводников, принятой для жилых зданий, в целях обеспечения электробезопасности время автоматического отключения не должно превышать значений, указанных ниже:

Время автоматического отключения

Номинальное фазное напряжение, В Время отключения, с
127 0,8
220 0,4
380 0,2
Более 380 0,1

В качестве защитной аппаратуры автоматического отключения применяются плавкие предохранители и автоматические выключатели.

Плавкий предохранитель – это коммутационный аппарат, который вследствие расплавления одного или более специально спроектированных и калиброванных элементов размыкает цепь, в которую он включен, и отключает ток, когда он превышает заданную величину в течение достаточного времени.

Автоматический выключатель – это механический коммутационный аппарат, способный включать, пропускать и отключать токи при нормальном состоянии цепи, а также включать, выдерживать в течение заданного времени и автоматически отключать токи в аномальном состоянии цепи, такие как токи короткого замыкания.

Учитывая, что электроустановки жилища повышенной комфортности и коттеджей в последние годы оснащаются в основном автоматическими выключателями, ниже рассматривается только этот вид защитной аппаратуры.

В основу выбора защитной аппаратуры в зависимости от величины токов КЗ положено, что кривая время-токовой характеристики, соответствующая допустимой тепловой нагрузке защищаемой электросети, должна лежать выше зоны время-токовой характеристики устройства защиты для всех возможных токов КЗ между минимальным и максимальным значениями.

Совет

Под время-токовой характеристикой подразумевается кривая, отражающая взаимосвязь времени и ожидаемого тока в определенных условиях эксплуатации. Указанный принцип проиллюстрирован на рис. 4.1.

Для установленного времени срабатывания защиты кривая допустимых значений I2t (интеграл Джоуля) защищаемого проводника должна лежать выше кривой I2t защитного устройства, так как кривая характеристики I2t устройства защиты характеризует максимальные рабочие значения I2t как функцию ожидаемого тока КЗ. Значения I2t аппаратов защиты приводятся в технических данных предприятиями-изготовителями.

Время отключения полного тока КЗ в любой точке цепи не должно превышать времени, в течение которого температура проводников достигает допустимого предела. Это время для защищаемого проводника может быть приблизительно вычислено по формуле

где t – продолжительность, с;

S – сечение проводника, мм2;

I – действующее значение тока КЗ, А;

K = 115 или 135 – для медных проводников (115 – с поливинилхлоридной изоляцией, 135 -с резиновой изоляцией и с изоляцией из сшитого полиэтилена);

К = 74 и 87 – для алюминиевых проводников (74 – с поливинилхлоридной изоляцией, 87 – с резиновой изоляцией и изоляцией из сшитого полиэтилена).

K = 115 – для соединений пайкой медных проводников.

Предельно допустимые значения температуры нагрева проводников приводятся в ПУЭ.

Автоматическая защита от перегрузки предназначена для отключения электросети при протекании по проводникам тока перегрузки раньше, чем такой ток мог бы вызвать повышение температуры проводников, опасное для изоляции, соединений, зажимов или среды, окружающей проводники.

Рис. 4.1. Характеристики автоматического выключателя и защищаемого проводника

С – кривая характеристики допустимого Ft;

D – I2t характеристика автоматического выключателя;

КЗ – максимальный ток КЗ, при котором обеспечивается защита автоматическим выключателем.

Обратите внимание

Рабочая характеристика любого защитного устройства, защищающего кабель от перегрузки, должна отвечать условиям:

где Ip – рабочий ток цепи; Iд – допустимый длительный ток кабеля; Iн – номинальный ток устройства защиты (устройства защиты с регулируемыми характеристиками номинальным током Iн является ток выбранной уставки); Iз – ток, обеспечивающий надежное срабатывание устройства защиты.

Практически Iз принимают равным:

– току срабатывания при заданном времени срабатывания для автоматических выключателей;

– току плавления плавкой вставки при заданном времени срабатывания для предохранителей.

Для выполнения защитных функций автоматические выключатели оснащаются различными расцепителями.

В общем виде расцепитель – это устройство, механически связанное с автоматическим выключателем (или встроенное в него), которое освобождает удерживающее устройство в механизме автоматического выключателя и вызывает автоматическое срабатывание выключателя.

В автоматических выключателях бытового назначения применяются: максимальный расцепитель тока, максимальный расцепитель с обратнозависимой выдержкой времени, максимальный расцепитель тока прямого действия и расцепитель перегрузки.

Максимальный расцепитель тока – расцепитель, вызывающий срабатывание автоматического выключателя с выдержкой времени или без нее, когда ток в этом расцепителе превышает заданное значение.

Максимальный расцепитель тока с обратнозависимой выдержкой времени – максимальный расцепитель тока, срабатывающий после выдержки времени, находящейся в обратной зависимости от значения сверхтока.

Максимальный расцепитель тока прямого действия – максимальный расцепитель тока, срабатывающий непосредственно от протекающего тока в главной цепи автоматического выключателя.

Расцепитель перегрузки – максимальный расцепитель тока, предназначенный для защиты от перегрузок.

В соответствии с СП31-110-2003 во внутренних сетях жилых зданий, как правило, следует применять автоматические выключатели с комбинированными расцепителями.

Номинальные токи комбинированных расцепителей автоматических выключателей для защиты групповых линий и вводов квартир, включая линии к электроплитам, должны выбираться в соответствии с расчетными нагрузками.

Уставки аппаратов защиты для взаиморезервируемых линий должны выбираться с учетом их послеаварийной нагрузки.

Важно

Автоматические выключатели характеризуются также включающей и отключающей способностью, предельной наибольшей отключающей способностью, рабочей наибольшей отключающей способностью и током отключения.

Так как наибольшие значения сверхтоков определяются токами короткого замыкания защищаемой цепи, при выборе выключателей в процессе проектирования необходимо учитывать указанные параметры.

В случаях последовательного соединения двух автоматических выключателей возникает проблема селективности их срабатывания, которая заключается в обеспечении отключения защищаемой цепи выключателем со стороны нагрузки до того, как отключение начнет второй выключатель со стороны питания.

Читайте также:  Что такое утечка тока и как ее найти?

Селективность характеризуется предельным током. Предельный ток селективности – это предельное значение тока:

– ниже которого при наличии двух последовательно соединенных аппаратов защиты от сверхтоков аппарат со стороны нагрузки успевает завершить процесс отключения до того, как его начнет второй аппарат (т.е. обеспечивается селективность);

– выше которого при наличии двух последовательно соединенных аппаратов защиты от сверхтоков аппарат со стороны нагрузки может не успеть завершить процесс отключения до того, как его начнет второй аппарат (т.е. селективность не обеспечивается).

Величина предельного тока селективности определяется координатой точки пересечения времятоковой характеристики в зоне наибольшей отключающей способности защитного аппарата на стороне нагрузки и время-токовой характеристикой расцепителя другого аппарата.

В бытовых электроустановках в целях защиты от сверхтоков используются, как правило, автоматические выключатели, выпускаемые по ГОСТ Р 50345-99, который аутентичен международному стандарту МЭК 60898-95.

В табл. 4.1 приведены предпочтительные значения номинального напряжения автоматических выключателей, выпускаемых в соответствии с указанным ГОСТом.

Таблица 4.1 Предпочтительные значения номинального напряжения

Предпочтительные значения номинального напряжения

Выключатели Цепь питания выключателя Номинальное напряжение, В
Однополюсные Однофазная (фаза с нейтралью) 230
Однофазная (фаза с нулевым заземленным проводом или фаза с нейтралью) 120
Однофазная (фаза с нейтралью) или трехфазная (три однополюсных автоматических выключателя) (трех- или четырехпроводная) 230/400
Двухполюсные Однофазная (фаза с нейтралью) 230
Однофазная (фаза с фазой) 400
Однофазная (фаза с фазой, трехпроводная) 120/240
Трехполюсные Трехфазная (трех- или четырехпроводная) 240
Четырехполюсные 400

К предпочтительным значениям номинального тока, установленного ГОСТом, относятся: 6, 8, 10, 13, 16, 20, 25, 32, 40, 50, 63, 80, 100 и 125 А.

Стандартные значения номинальной частоты 50 и 60 Гц.

Стандартные значения номинальной отключающей способности: 1500, 3000, 4500, 6000, 10 000 А. Стандарт определяет три типа характеристик мгновенного расцепления: В, С и D. Ниже приведены диапазоны мгновенного расцепления выключателя в зависимости от кратности сверхтока по отношению к номинальному Iн:

Тип характеристики мгновенного расцепления

Тип защитной характеристики Диапазон
В Свыше 3 Iн до 5 Iн включительно
С Свыше 5 Iн до 10 Iн включительно
D Свыше 10 Iн до 14 Iн включительно

В электроустановках жилых зданий в основном используются автоматические выключатели с характеристиками типов В и С. Расцепление типа В рационально применять для защиты розеточных линий, типа С – для линий, питающих светильники, теплые полы и стены, сауны и т.п. При выборе автоматического выключателя необходимо учитывать предполагаемую температуру окружающей среды в месте его установки.

В каталогах приводится номинальный ток выключателя для температуры окружающей среды 30 0С.

Повышение температуры сверх 30 0С приводит к преждевременному срабатыванию теплового расцепителя, так как его температура достигает уровня срабатывания при меньших значениях тока.

Совет

Поэтому при установке автоматических выключателей в местах, где температура окружающей среды превышает номинальную, равную 30 0С, номинальное значение тока выключателя уменьшается:

где Iн – допустимый ток при температуре окружающей среды 1°С, отличной от номинальной tо.с.н = 30 C;

Iн.а – номинальный ток автоматического выключателя при номинальной (расчетной) температуре окружающей среды;

Oн – превышение температуры срабатывания теплового расцепителя над номинальной расчетной температурой окружающей среды tосн = 30 оС, Оt = tср – tо.с.н;

– температурный коэффициент, учитывающий уменьшение (увеличение) допустимого тока автоматического выключателя в зависимости от температуры окружающей среды в месте его установки.

Здесь Ot- превышение температуры срабатывания tcp теплового расцепителя над температурой окружающей среды, Оt = tср – tо.с;

Для выключателей бытового назначения ориентировочные значения величины Kt в зависимости от температуры окружающей среды в месте установки приведены ниже:

toc….20 30   35   40    45    50      55    60

Kt ….1,05 1 0,97 0,95 0,92 0,89 0,87 0,84

Кроме того, для модульных автоматических выключателей бытового назначения устанавливаемых в шкафах рядом друг с другом на рейках, следует использовать величину 0,8Kt.

Выбор автоматических выключателей в тех случаях, когда температура окружающей среды больше или меньше стандартной контрольной, при которой определялись его номинальные данные, производится с использованием температурного коэффициента Kt по формуле

где Iн.р – номинальный ток расцепителя.

Пример:

Дано:

1. Максимальный расчетный ток нагрузки Iрас.mах = 20 А.

Обратите внимание

2. Температура окружающей среды в месте установки toc = +55 0С при этом Iрас.mах=Iнt Номинальный ток автоматического выключателя при нормальных условиях должен быть:

По приведенным выше данным Kt для 55 0С равен 0,87.

Отсюда

Принимаем автоматический выключатель с номинальным током 25 А.

Если выключатель установлен в ряд с другими автоматами, в металлическом шкафу, то его номинальный ток определяется по формуле

Принимаем к установке автоматический выключатель с номинальным током Iн.а = 32 А.

4.2. Принципы выбора коммутационной аппаратуры

К коммутационным аппаратам относится достаточно широкий спектр электрооборудования, с помощью которого осуществляется включение-отключение как основных токовых цепей, так и цепей управления.

Для коммутации основных токовых цепей наряду с рассмотренными выше автоматическими выключателями используются рубильники, переключатели, контакторы, магнитные пускатели и т.п.

Для коммутации цепей управления используются различные реле, как мгновенного действия, так и реле с выдержкой времени на замыкание и размыкание контактов, кнопки и ключи (переключатели) управления и пр.

Аппаратура для коммутации цепи управления может содержать аппарат для цепи управления и связанные с ним устройства, например световые индикаторы.

Аппарат для цепей управления может содержать один или несколько коммутационных элементов и механизм передачи усилия переключения. Коммутационный элемент может быть контактным или полупроводниковым.

Выбор при проектировании аппаратов из рассматриваемой группы определяется следующими основными параметрами:

– номинальным напряжением и потребляемым током катушек;

– коммутационной способностью контактов или выходных полупроводниковых цепей

(номинальное напряжение, номинальный ток коммутируемый цепи);

– для реле с выдержкой времени – диапазоном выдержки времени.

Не менее важными факторами являются способ установки аппарата (под винт, на DIN-рейку) и присоединение проводов (переднее, заднее).

Источник: http://www.eti.su/articles/spravochnik/spravochnik_1562.html

Выбор автоматических выключателей

Автоматические выключатели предназначены для проведения тока в нормальном режиме и отключения тока при коротких замыканиях, перегрузках или недопустимых снижениях напряжения, а также для нечастых оперативных включений и отключений электрических цепей.

Классификация

Автоматические выключатели классифицируются по следующим признакам:

  • количество полюсов – от 1 до 4;
  • род тока главной цепи: постоянный; переменный; постоянный и переменный ток.
  • токоограничивающие или не токоограничивающие;

по виду расцепителя:

  • с расцепителем, тепловым или полупроводниковым, в зоне токов перегрузки;
  • с расцепителем электромагнитным в зоне токов коротких замыканий;

Конструкцией выключателя может предусматриваться наличие теплового (полупроводникового) или электромагнитного расцепителя, либо наличие теплового и электромагнитного расцепителя одновременно – т.н. комбинированный расцепитель;

  • неселективные или селективные – с выдержкой времени в зоне токов короткого замыкания;
  • по виду привода – с ручным приводом или электроприводом;
  • по исполнению:
    • стационарного исполнения с креплением неподвижно на щите или панели;
    • выдвижной с креплением в раме (на DIN-рейке), с возможностью перемещения без разрыва электрической цепи для обслуживания и ремонта.

Многие типы автоматических выключателей предусматривают установку дополнительных сборочных единиц, дополнительных (сигнальных) контактов, независимых расцепителей, позволяющих дистанционно отключать автоматический выключатель.

Кроме того, выключатели могут комплектоваться крепежными изделиями, специальными кабельными наконечниками, устройствами ручного дистанционного привода для оперирования выключателем без открывания двери шкафа, устройствами запирания выключателя на замок в положении «выключено» и т.п.

Нормируемые технические характеристики

Номинальный ток выключателя Iн – максимальное значение тока (переменного или постоянного), протекающего в длительном режиме через автоматический выключатель при нормальных условиях эксплуатации.

Калибруемое значение номинального рабочего тока теплового (или полупроводникового) расцепителя Iнр – такое значение тока, переменного или постоянного, при длительном протекании которого не происходит отключения автоматического выключателя, но происходит его отключение при протекании за нормированное время тока, большего по значению, как правило 1,05 Iнр…1,2 Iнр. Калибруемое значение номинального рабочего тока теплового (полупроводникового) расцепителя выбирается из стандартного ряда, но не может превышать номинального тока выключателя.

Уставка по току срабатывания в зоне токов короткого замыкания – такое значение тока, переменного или постоянного, при котором происходит практически мгновенное срабатывание автоматического выключателя с разрывом электрической цепи. Уставка по току срабатывания в зоне токов короткого замыкания нормируется либо в единицах тока, либо как величина, кратная току теплового расцепителя Iнр, например 10 Iнр.

Для автоматических выключателей, выполненных в стандартах DIN, уставка по току срабатывания в зоне токов короткого замыкания стандартизована и имеет обозначение:

  • «В» – устанавливают в сетях жилых домов, где нет скачков тока (например, от включающихся двигателей), ток электромагнитного расцепителя лежит в пределах 3…5 Iнр теплового расцепителя;
  • «С» – также предназначены для установки в сетях жилых зданий. Диапазон срабатывания 5…10 Iнр. Используются для защиты электроустановок с небольшими пусковыми токами (например, стиральные машины);
  • «D» и «К» – имеют диапазон срабатывания мгновенного расцепителя  10…14 Iнр. Устанавливаются, в основном, в производственным помещениях, где электроустановки с большими пусковыми токами (например, мощные электродвигатели);
  • «L» – З…4 Iнр;
  • «U» – 6…9 Iнр;
  • «Z» – 2,5…3,5 Iнр.

У европейских производителей классификация может несколько отличаться. В частности, имеется дополнительный тип «А» (свыше 2·Iнр. до 3·In.) и верхняя граница типа «D» составляет 20·Iнр.

На тепловое срабатывание автоматических выключателей, помимо основной электроцепи, влияют и внешние факторы, такие как тепловое влияние рядом стоящих автоматов и температура окружающей цепи.

Важно

Во избежание неправильных срабатываний автоматических выключателей при расчете нагрузки необходимо учитывать поправочный коэффициент (К=1…

0,85) взаимного теплового влияния автоматических выключателей, стоящих рядом друг с другом.

Для отдельных типов автоматических выключателей числовые значения уставок могут несколько меняться.

Время срабатывания в зоне токов короткого замыкания – нормируется для селективных выключателей и определяет время выдержки до разрыва электрической цепи при достижении протекающего через выключатель тока величины, равной или превышающей установленный ток в зоне токов короткого замыкания:

  • нормальные (с временем срабатывания 0,02-1 секунды)
  • и быстродействующие (с временем срабатывания менее 0,005 секунды).

Номинальное напряжение, В – напряжение переменного или постоянного тока, протекающего через автоматический выключатель, при котором нормируются его технические характеристики.

Предельная коммутационная способность – предельное значение токов короткого замыкания, при протекании которого сохраняется работоспособность автоматического выключателя.

Читайте также:  Допускается ли проход кабеля через перегородку в трубе из пвх?

При выборе автоматических выключателей необходимо учитывать следующие параметры:

  • номинальный ток;
  • номинальное напряжение;
  • условия эксплуатации (тип исполнения).

Если Вам нужно выбрать автоматический выключатель для подключения заранее известной электроустановки с определенной нагрузкой нужно произвести расчет тока.

Выбор автоматического выключателя по параметрам короткого замыкания:

I=U/Rk,

  • где U –напряжение сети (220/380 В);
  • R – полное сопротивление петли фаза-ноль;
  • k– поправочный коэффициент для автоматических выключателей:
    • характеристики «В»: k = 5;
    • характеристики «C»: k=10,
    • характеристики «D»: k = 50.

Расчет минимального номинального тока автоматического выключателя:

I min n = 4,55хP,

  • где Р – суммарная мощность потребителей (кВт), подключаемых к автоматическому выключателю;
  • 4,55 – коэффициент пропорциональности (А/кВт).

Основное правило при выборе автоматического выключателя – номинальный ток автоматического выключателя не должен превышать допустимые токовые нагрузки для Вашей проводки. В противном случае при полной нагрузке электроустановки, превышающей предел допустимой для электропроводки, автомат не защитит провода от перегрева и возможного выхода из строя или возгорания.

В обычных квартирах чаще всего используются модульные автоматические выключатели. К их основным достоинствам относится компактность, благодаря которой устройства занимают мало места, легкость монтажа, и аккуратный внешний вид. Установить автомат очень просто: нужно только защелкнуть их на DIN-рейке; смена устройства также не вызывает никаких затруднений.

Для того чтобы выбрать тот аппарат, который наиболее вам подходит, необходимо выяснить, какова общая мощность потребления ваших электроприборов в ваттах и разделить ее на напряжение сети, равное 220 в. Чтобы узнать мощность электроприбора, можно воспользоваться его паспортом.

Учтите, что нагрузка в сети неравномерна: пусковой ток нагрузки, необходимый для двигателей пылесосов, фенов и других подобных приборов, намного больше потребляемого. Поэтому нужно подобрать такой автоматический выключатель, который сможет выдержать и возникновение больших кратковременных токов, и «отшить» короткое замыкание.

Пусковые токи потребителей электроэнергии:

Потребитель Кратность пусковоготока Длительность импульса пусковоготока, с.
Лампы накаливания 5-13 0,05-0,3
Электронагревательные приборы из сплавов:нихром, фехраль, хромаль 1,05-1,1 0,5-30
Люминесцентные лампы с пусковыми устройствами 1,05-1,1 0,1-0,5
Приборы с выпрямителем на входе блока питания 5-10 0,25-0,5
Приборы с трансформатором на входе блока питания до 3 0,25-0,5
Устройства с электродвигателями 3-7 1-3

В жилых помещениях обычно используют автоматы номиналом 25 Ампер для розеточной группы и 16 Ампер для осветительной группы. Такие устройства способны выдержать как короткое замыкание, так и кратковременные увеличения пусковых токов.

Приобретайте автоматы только известных производителей, в качестве которых вы уверены. При покупке особое внимание обратите на отсутствие внешних дефектов на автомате (сколов и трещин).

Не используйте автоматы в качестве выключателей.

Источник: http://malahit-irk.ru/index.php/2011-01-13-09-04-43/85-2011-04-24-04-59

Расчет токов короткого замыкания

Короткое замыкание между проводниками является опаснейшим явлением, как в электрической сети частного домовладения, так и в сложных разводках подстанций и питающих цепей мощного производственного оборудования.

Короткое замыкание может стать причиной пожара и выхода из строя дорогостоящих электроприборов, поэтому расчёт токов короткого замыкания, является обязательным этапом перед осуществлением прокладки кабелей для различных потребителей электричества.

Кто занимается вычислением КЗ

Расчёт КЗ, производится квалифицированными специалистами, которые не только производят необходимые вычисления, но и несут ответственность за дальнейшую эксплуатацию электрического оборудования.

Домашние электрики также могут осуществить данные вычисления, но только при наличии начальных знаний о природе электричества, свойствах проводников и о роли диэлектриков, в их надёжной изоляции друг от друга.

При этом, полученный результат значения короткого замыкания, перед проведением электротехнических работ, необходимо перепроверить самостоятельно, либо воспользоваться услугами специализированных фирм, которые осуществляют данные вычисления на платной основе. Как рассчитать ток короткого замыкания используя специальные формулы, будет подробно описано далее.

Особенности расчёта

Расчёт токов трёхфазного оборудования производится с применением специальных формул.

Если расчёт тока трёхфазного короткого замыкания, необходимо сделать для электрических сетей напряжением до 1000 В, то необходимо учитывать следующие нюансы при проведении расчётов:

  1. Трёхфазная система должна считаться симметричной.
  2. Питание трансформатора принимается за неизменяемую величину, равную его номинальному значению.
  3. Момент возникновения КЗ принято считать при максимальном значении силы тока.
  4. ЭДС источников питания, удалённых на значительное расстояния от участка электрической сети, где происходит КЗ.

Также при вычислении параметров КЗ необходимо правильно посчитать результирующее сопротивление проводника, но делать это необходимо через приведение единого значения мощности.

Если производить расчёт сопротивления стандартными формулами известными из курса физики, то можно допустить ошибки, по причине неодинакового номинального напряжения в момент возникновения короткого замыкания для различных участков электрической цепи.

Совет

Выбор такой базисной мощности позволяет значительно упростить расчёты, и значительно повысить их точность.

Для сети переменного тока наприряжением 220 В, базисное напряжение будет равно 231 В.

Формулы вычисления трёхфазного замыкания

Расчёт токов коротких замыканий в электроэнергетических системах трёхфазного электричества производится с учётом особенности возникновения данного процесса.

Из-за проявления индуктивности проводника, в котором происходит короткое замыкание, сила КЗ изменяется не мгновенно, а происходит нарастание данной величины по определённым законам. Чтобы методика расчёта токов короткого замыкания позволила произвести высокоточные вычисления, необходимо высчитать все основные величины вносимые в расчётные формулы.

Часто для этой цели требуется воспользоваться дополнительными формулами или специальным программным обеспечением. Современные возможности вычислительной техники, позволяют осуществлять сложнейшие операций в считанные секунды.

Методы расчёта токов короткого замыкания могут быть расширены применением специального программного обеспечения.

В данном случае, может быть использована компьютерная программа, которая может быть написана любым квалифицированным программистом.

Если вычисление параметров КЗ в трёхфазной сети осуществляется вручную, то в для получения точного результата этого значения применяется формула:

где: Хвн — сопротивление между точкой короткого замыкания и шинами. Хсист — сопротивление всей системы по отношению к шинам источника. Uс — напряжение на шинах системы.

Если какой-либо показатель отсутствует при проведении расчётов, то его можно высчитать применив для этого дополнительные формулы, или следует применить специальные программы для компьютера.

Для упрощения схемы необходимо:

  1. Сложить все показатели параллельно подключённого сопротивления электрических цепей.
  2. Сложить последовательно подключённые сопротивления.
  3. Вычислить результирующее сопротивлению, путём сложения всех параллельно и последовательно подключённых сопротивлений.

Расчёт однофазной сети

Расчет токов коротких замыканий в электроэнергетических системах однофазного напряжения допускает проведение упрощённых вычислений.

Обычно, электроприборы тока однофазного не потребляют много электричества, и для надёжной защиты квартиры или дома от возникновения короткого замыкания, достаточно установить автоматический выключатель рассчитанный на величину срабатывания, равную 25 А.

Если требуется
осуществить приблизительный расчёт однофазного короткого замыкания, то его производят по формуле:

Обратите внимание

где Uf — напряжение фазы. Zt — сопротивление трансформатора, при возникновении КЗ. Zc — сопротивление между фазным и нулевым проводником.

Ik — однофазный ток короткого замыкания.

Вычисление параметров КЗ в однофазной цепи с использованием данной формулы производится с погрешностью до 10%, но в большинстве случаев этого достаточно для осуществления правильной защиты электрической сети.

Основным затруднением для получения данных рассчитанных по этой формуле, является сложность в получении значения Zc.

Если параметры проводника известны и переходные сопротивления также определены, то сопротивление между фазным и нулевым проводником рассчитывается по формуле:

где: rf — активное сопротивление фазного провода, Ом; rn — активное сопротивление нулевого провода, Ом; ra — суммарное активное сопротивление контактов цепи фаза-нуль, Ом; xf» — внутреннее индуктивное сопротивление фазного провода, Ом; xn» — внутреннее индуктивное сопротивление нулевого провода, Ом;

x’ — внешнее индуктивное сопротивление цепи фаза-нуль, Ом.

Таким образом подставляя известные значения в формулы приведённые выше, легко найдём ток короткого замыкания для однофазной сети.

Вычисление параметров КЗ в однофазной сети осуществляется в такой последовательности:

  1. Выяснится параметры питающего трансформатора или реактора.
  2. Определяются параметры используемого проводника.
  3. Если электрическая схема слишком разветвлена, то её следует упростить.
  4. Определяется полное сопротивление можду «фазой» и «0».
  5. Вычисляется полное сопротивление трансформатора или реактора, если данное значение нельзя получить из документации к источнику питания.
  6. Значения подставляются в формулу.

Вычисление КЗ по паспортным данным

Значительно упрощается задача по расчёту КЗ, если имеются паспортные данные реактора или трансформатора. В этом случае достаточно номинальные значения электричества и напряжения подставить в расчётные формулы, чтобы получить значение тока КЗ.

Сила и мощность КЗ могут быть определены по следующим формулам:

В данной формуле значение Iном равно номинальному току электрического трансформатора или реактора.

Определение тока КЗ в сети неограниченной мощности

Если необходимо рассчитать КЗ в системе, где мощность источника электричества несоизмеримо выше суммарной мощности потребителей электричества, то величину напряжения можно условно считать неизменной.

В таких условиях мощность электричества будет равна бесконечности, а сопротивление проводника — нулю. Данные условия могут быть применены только к таким расчётным условиям, когда точка короткого замыкания удалена на значительное расстояние от источника электричества, а результирующее сопротивление цепи в десятки раз превышает сопротивление системы.

Для электрической сети неограниченной мощности сила электрической напряжённости рассчитывается по формуле:

Ik=Ib/Xрез где: Ik — сила тока короткого замыкания; Ib — базисный ток;

Хрез — результирующее напряжения сети.

Подставив значение в формулу можно получить значение параметров КЗ в сети неограниченной мощности.

Руководящие указания по расчёту токов короткого замыкания, изложенные в данной статье, содержат основные принципы, по которым определяется сила тока в проводнике в момент образования этого опасного явления.

Важно

Если возникает сложность в проведении данных расчётов самостоятельно, то можно воспользоваться услугами профессиональных инженеров-электриков, которые проведут все необходимые вычисления.

Расчёт токов короткого замыкания и выбор электрооборудования по совету профессионалов позволит гарантировать бесперебойное и безопасное использование электрических сетей в частном доме или на производстве.

Предыдущая новость Следующая новость

Источник: https://EvoSnab.ru/elektrotehnika/kz/raschet-tokov-korotkogo-zamykanija

Расчет токов короткого замыкания

Сегодня хочу вашему вниманию представить методику расчета токов короткого замыкания. Самое главное без всякой воды и каждый из вас сможет ей воспользоваться, приложив минимум усилий, а некоторые из вас получат и мою очередную программу, с которой считать будет еще проще.

Это уже вторая статья, посвященная токам короткого замыкания. В первой статье я обратил ваше внимание на защиту протяженных электрических сетей и то, что в таких сетях, порой, не так просто подобрать защиту от токов короткого замыкания. Для того и проектировщик, чтобы решать подобные вопросы.

Читайте также:  Какого цвета фазный провод?

Теорию по расчету токов короткого замыкания можно найти в следующих документах:

1 ГОСТ 28249-93 (Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ).

2 РД 153-34.0-20.527-98 (Руководящие указания по расчету токов короткого замыкания и выбору элетрооборудования).

3 А.В. Беляев (Выбор аппаратуры, защит и кабелей в сетях 0,4кВ).

В интернете я не нашел, где все четко было бы расписано от «А» до «Я».

Думаю вы со мной согласитесь, что токи короткого замыкания не так просто рассчитать, поскольку проектировщик не всегда досконально владеет всей необходимой информацией. Данный метод расчета является упрощенным, т.к. в нем не учитываются сопротивления контактов автоматических выключателей, предохранителей, шин, трансформаторов тока.

Возможно, позже все эти сопротивления я учту, но, на мой взгляд, эти значения на конечный результат влияют незначительно.

Последовательность расчета токов короткого замыкания.

1 Сбор исходных данных по трансформатору:

Uкз — напряжение короткого замыкания трансформатора, %;

Рк — потери короткого замыкания трансформатора, кВт;

Uвн – номинальное напряжение обмоток ВН понижающего трансформатора; кВ;

Uнн (Ел) – номинальное напряжение обмоток НН понижающего трансформатора; В;

Еф – фазное напряжение обмоток НН понижающего трансформатора; В;

Sнт – номинальная мощность трансформатора, кВА;

Zт – полное сопротивление понижающего трансформатора током однофазного к.з., мОм;

Активные и индуктивные сопротивления трансформаторов 6(10)/0,4кВ, мОм

2 Сбор исходных данных по питающей линии:

Тип, сечение кабеля, количество кабелей;

L – длина линии, м;

Хо – индуктивное сопротивление линии, мОм/м;

Zпт – полное сопротивление петли фаза-ноль от трансформатора до точки к.з., измеренное при испытаниях или найденное из расчета, мОм/м;

Полное удельное сопротивление петли фаза-ноль для кабелей или пучка проводов

3 Другие данные.

Куд – ударный коэффициент.

Ударный коэффициент

После сбора исходных можно приступить непосредственно к вычислениям.

Активное сопротивление понижающего трансформатора, мОм:

Активное сопротивление трансформатора

Индуктивное сопротивление понижающего трансформатора, мОм:

Индуктивное сопротивление трансформатора

Активное сопротивление питающей линии, мОм:

Rк=Rуд.к*l/Nк

Индуктивное сопротивление питающей линии, мОм:

Хк=Худ.к*l/Nк

Полное активное сопротивление, мОм:

RΣ = Rт+Rк

Полное индуктивное сопротивление, мОм:

XΣ=Xт+Xк

Полное сопротивление, мОм:

Полное сопротивление

Ток трехфазного короткого замыкания, кА:

Ток трехфазного короткого замыкания

Ударный ток трехфазного к.з., кА:

Ударный ток трехфазного к.з.

Ток однофазного короткого замыкания, кА:

Zпт=Zпт.уд.*L 

Ток однофазного короткого замыкания

Рассчитав токи короткого замыкания, можно приступать к выбору защитных аппаратов.

По такому принципу я сделал свою новую программу для расчета токов короткого замыкания. При помощи программы все расчеты можно выполнить значительно быстрее и с минимальным риском допущения ошибки, которые могут возникнуть при ручном расчете. Пока это все-таки beta-версия, но тем не менее думаю вполне рабочий вариант программы.

Внешний вид программы:

Программа для расчета токов к.з.

Ниже в программе идут все необходимые таблицы для выбора нужных параметров трансформатора и питающей линии.

Также в месте с программой я прилагаю образец своего расчета, чтобы быстро можно было оформить расчет и предоставить всем заинтересованным органам.

Совет

Стоит заметить, что у меня появилась еще одна мелкая программа – интерполяция. Удобно, например, находить удельную нагрузку квартир при заданных значениях.

Интерполяция

Жду ваших отзывов, пожеланий, предложений, уточнений.
Продолжение следует… будет еще видеообзор измененной версии.

Источник: http://220blog.ru/pro-raschet/raschet-tokov-korotkogo-zamykaniya.html

Ток короткого замыкания: как рассчитать, таблица

Электрическая энергия несет в себе довольно высокую опасность, от которой не защищены ни работники отдельных подстанций, ни бытовые приборы. Ток короткого замыкания – это один из самых опасных видов электроэнергии, но существуют методы, как его контролировать, рассчитать и измерить.

Что это такое

Ток короткого замыкания (ТКЗ) – это резко возрастающий ударный электрический импульс. Главной его опасностью является то, что согласно закону Джоуля-Ленца такая энергия имеет очень высокий показатель выделения тепла. В результат короткого замыкания могут расплавиться провода или перегореть определенные электроприборы.

Фото – временная диаграмма

Он состоит из двух основных слагающих – апериодическая составляющая тока и вынужденная периодическая слагаемая.

Формула – периодическаяФормула – апериодическая

По принципу, сложнее всего измерить именно энергию апериодического возникновения, которая является емкостной, доаварийной.

Ведь именно в момент аварии разница между фазами имеет наибольшую амплитуду. Также его особенностью является не типичность возникновения этого тока в сетях.

Схема его образования поможет показать принцип действия этого потока.

Сопротивление источников из-за высокого напряжения при КЗ замыкается на небольшом расстоянии или «накоротко» – поэтому это явление получило такое название.

Бывает ток короткого трёхфазного замыкания, двухфазного и однофазного – здесь классификация происходит по количество замкнутых фаз. В некоторых случаях, КЗ может быть замкнут между фазами и на землю.

Тогда, чтобы его определить, нужно будет отдельно учитывать заземление.

Фото – результат КЗ

Также можно распределить КЗ по типу подключения электрооборудования:

Для полного объяснения этого явления предлагаем рассмотреть пример. Скажем, есть конкретный потребитель тока, который подключен к локальной линии электропередач при помощи отпайки.

При правильной схеме общее напряжение в сети равно разнице ЭДС у источника питания и снижению напряжения в локальных электрических сетях.

Исходя из этого, для определения силы тока короткого замыкания может использоваться формула Ома:

R = 0; Iкз = Ɛ/r

Здесь r –сопротивление КЗ.

Если подставить определенные значения, то можно будет определить ток замыкания в любой точке на всей линии электропередач. Здесь не нужно проверять кратность КЗ.

Способы расчета

Предположим, что замыкание уже произошло в трехфазной сети, к примеру, на подстанции или на обмотках трансформатора, как тогда производится расчет токов короткого замыкания:

Формула – ток трехфазного замыкания

Здесь U20 – это напряжение обмоток трансформатора, а ZT – сопротивление определенной фазы (которая была повреждена в КЗ). Если напряжение в сетях – это известный параметр, рассчитывать требуется сопротивление.

Каждый электрический источник, будь-то трансформатор, контакт аккумуляторной батареи, электрические провода – имеет свой номинальный уровень сопротивления. Иными словами, Z у каждого свое. Но они характеризуются сочетанием активных сопротивлений и индуктивных.

Также есть емкостные, но они не имеют значение при расчете токов высокой силы. Поэтому многими электриками используется упрощенный способ вычисления этих данных: арифметический расчет сопротивления постоянного тока на последовательно соединенных участках.

Когда эти характеристики известны, не составит труда по формуле ниже рассчитать полное сопротивление для участка или целой сети:

Формула полного заземления

Рассмотрим на примере, как рассчитать ток короткого замыкания аккумулятора с ЭДС 12 В и внутренним сопротивлением 0,01 Ом. Для начала потребуется формула Ома для полной цепи:

I = ε/r

Где ε – это ЭДС, а r – величина сопротивления.

Обратите внимание

Учитывая, что во время перегрузок сопротивление равняется нулю, решение принимает следующий вид:

I = ε/r = 12 / 10-2

Исходя из этого, сила при коротком замыкании этого аккумулятора равна 1200 Ампер.

Таким образом можно также рассчитать ток КЗ для двигателя, генератора и других установок. Но на производстве не всегда есть возможность рассчитывать допустимые параметры для каждого отдельного электрического устройства.

Помимо этого, следует учитывать, что при несимметричных замыканиях нагрузки имеют разную последовательность, для учета которой требуется знать cos φ и сопротивление.

Для расчета используется специальная таблица ГОСТ 27514-87, где указываются эти параметры:

Устройства cos φ Сопротивление, Ом
Последовательность прямая Обратная
Синхронные электродвигатели высоковольтные 0,9 0,04+ j 0,22 0,04+ j 0,22
Асинхронные электродвигатели высоковольтные 0,9 0,06+ j 0,18 0,06+ j 0,18
Асинхронные электродвигатели низковольтные 0,8 0,09+ j 0,154 0,09+ j 0,154
Лампы накаливания 1,0 1,0 1,33
Газоразрядные источники света 0,85 0,85+ j 0,53 0,382+ j 0,24
Преобразователи 0,9 0,9+ j 0,44 1,66+ j 0,814
Электротермические установки 0,9 1+ j 0,49 0,4+ j 0,196

Также существует понятие односекундного КЗ, здесь формула силы тока при коротком замыкании определяется при помощи специального коэффициента:

Формула – коэффициент КЗ

Считается, что в зависимости от сечения кабеля, КЗ может пройти незаметно для проводки. Оптимальным является длительность замыкания до 5 секунд. Взято из книги Небрат «Расчет КЗ в сетях»:

Сечение, мм2 Длительность КЗ, допустимая для конкретного типа проводов
Изоляция ПВХ Полиэтилен
Жилы медь Алюминий Медь Алюминий
1,5 0,17 нет 0,21 нет
2,5 0,3 0,18 0,34 0,2
4 0,4 0,3 0,54 0,36
6 0,7 0,4 0,8 0,5
10 1,1 0,7 1,37 0,9
16 1,8 1,1 2,16 1,4
25 2,8 1,8 3,46 2,2
35 3,9 2,5 4,8 3,09
50 5,2 3 6,5 4,18
70 7,5 5 9,4 6,12
95 10,5 6,9 13,03 8,48
120 13,2 8,7 16,4 10,7
150 16,3 10,6 20,3 13,2
185 20,4 13,4 25,4 16,5
240 26,8 17,5 33,3 21,7

Эта таблица поможет узнать ожидаемую условную длительность КЗ в нормальном режиме работы, амперметраж на шинах и различных типах проводов.

Если рассчитывать данные по формулам нет времени, то используется специальное оборудование. К примеру, большой популярностью у профессиональных электриков пользуется указатель Щ41160 – это измеритель тока короткого замыкания фаза-ноль 380/220В.

Цифровой прибор позволяет определить и рассчитать силу КЗ в бытовых и промышленных сетях. Такой измеритель можно купить в специальных электротехнических магазинах.

Эта методика хороша, если нужно быстро и точно определить уровень тока петли или отрезка цепи.

Также используется программа «Аврал», которая быстро может определить термическое действие КЗ, показатель потерь и силу тока. Проверка производится в автоматическом режиме, вводятся известные параметры и она сама рассчитывает все данные. Это проект платный, лицензия стоит около тысячи рублей.

Видео: защита электрической сети от короткого замыкания

Защита и указания по выбору оборудования

Несмотря на всю опасность этого явления, все же есть способ, как ограничить или свести к минимуму вероятность возникновения авариных ситуаций.

Очень удобно использовать электрический аппарат для ограничения короткого замыкания, это может быть токоограничивающий реактор, который значительно снижает термическое действие высоких электрических импульсов.

Но для бытового использования этот вариант не подойдет.

Фото – схема блока защиты от кз

В домашних условиях часто можно встретить использование автомата и релейной защиты. Эти расцепители имеют определенные ограничения (максимальный и минимальный ток сети), при превышении которых отключают питание.

Автомат позволяет определять допустимый уровень ампер, что помогает повысить безопасность. Выбор производится среди оборудования с высшим классом защиты, нежели нужно. Например, в сети 21 ампер рекомендуется использовать автомат для отключения 25 А.

Обсудить на форумеОЦЕНИТЬ:(4

Источник: https://www.asutpp.ru/tok-korotkogo-zamykaniya.html

Ссылка на основную публикацию
Adblock
detector