Адаптация электроприбора 120 вольт на 220
На днях товарищ принес светильник с датчиком движения. Проблема оказалась в том, что светильник привезли из США и подключить его к нашей сети напряжением 220 вольт не представлялось возможным.
Как известно в питающей сети США величина напряжения составляет 120 вольт при частоте 60 Герц. Сам светильник оказался очень хорошего качества. Корпус выполнен из металла, а не из дешевого пластика.
Имеется возможность менять угол наклона ламп – все сделано на шарнирных соединениях с фиксацией. Максимальная суммарная мощность двух подключаемых ламп составляет 500 Ватт. Время задержки выключения освещения задается переключателем на одну, пять и десять минут.
Имеется датчик освещенности, который не позволяет включать освещение в светлое время суток.
Задача состояла в переделке, адаптации светильника к сети напряжением 220 вольт. Вскрытие показало, что блок питания датчика движения собран по безтрансформаторной схеме.
В начале осмотра ожидал увидеть что, либо необычное и на первый взгляд показалось, что выпрямление сетевого напряжения осуществляется парой диодов. Маркировка на реле косвенно указывала на то, что питание схемы осуществляется выпрямленным напряжением 24 вольта.
В подтверждение тому нашелся стабилитрон 1N4749 с напряжением стабилизации 24 Вольта. Разводка платы показалась слегка странной, и пришлось нарисовать схему.
И вот тут ожидание чего-то необычного материализовалось. Как оказалось в схеме присутствует диодный мост, но не совсем привычного вида.
Как видно из рисунка, мост состоит не из четырех диодов с дальнейшим подключением в его диагональ стабилитрона, а из двух диодов и двух стабилитронов.
В данном случае стабилитроны работают и как диоды и как стабилитроны в момент, когда напряжение на выходе превышает напряжение стабилизации, т.е. ограничивает его величину.
У этой схемы моста есть как свои плюсы, так и минусы.
К плюсам можно отнести меньшее количество деталей (четыре корпуса вместо пяти со стабилитроном в диагонали), чем в классической схеме, меньше отверстий в плате, что в масштабах массового производства дает существенную экономию.
К минусам же нужно отнести несколько большие пульсации напряжения на выходе моста. По всей видимости, в целом схема датчика не чувствительна к уровню пульсаций и в связи с этим применили именно эту схему.
Из анализа схемы стало ясно, что задача перевода схемы на питание от сети 220 вольт сводится к замене гасящего конденсатора С1. В заводском варианте установлен конденсатор емкостью 0,56 мкф с допустимым напряжением 250 вольт, чего явно не достаточно в наших условиях и вместо него следует установить конденсатор минимум на 400 Вольт.
Кроме того, изменение питающего напряжения со 120 до 220 Вольт и частоты сети с 60 до 50 Герц однозначно скажется на емкости конденсатора. Пересчет его емкости для перестраховки провел двумя способами.
Здесь о них долго рассказывать нет смысла – они описаны в литературе. Лишь замечу, что результаты расчетов незначительно отличаются друг от друга.
В первом случае емкость получилась 0,31 мкф, в другом 0,36 мкф, что не существенно.
Так, как от номинала балластного конденсатора зависит ток, который можно снять с блока питания, то найденный в закромах конденсатор на 0,47 мкф х 400 Вольт придется кстати в данном устройстве и создаст запас по мощности.
В наших условиях при частоте 50 Герц отсчет интервалов будет производиться с погрешностью, установить которую решил экспериментальным путем. После замены конденсатора и включения в сеть (переключатель временных интервалов в положении TEST) устройство в течении полутора минут производило самотестирование. После чего перешло в дежурный режим.
Установив переключатель в положение «1 min» вызвал срабатывание устройства. Поэкспериментировав несколько раз, установил, что отключение происходит через 45-53 секунды, т.е. погрешность не значительна и вполне приемлема.
В других положениях переключателя временных интервалов погрешность соответственно больше, но в целом устройство работает стабильно.
Таким образом, переделку светильника можно считать успешной. Специально для сайта “Радиолюбительская электроника” – Кондратьев Николай, г. Донецк.
Схемы блоков питания
Источник: http://elwo.ru/publ/skhemy_blokov_pitanija/adaptacija_ehlektropribora_120_volt_na_220/7-1-0-925
Как подключить светодиоды к 220 В электрической сети
Достаточно часто нам приходится сталкиваться с таким вопросом – как подключить светодиоды к 220 В, или попросту к электрической сети переменного напряжения. Как таковое, прямое подключение диода напрямую к сети не несет никакой смысловой нагрузки. Даже при использовании определенных схем мы не получим необходимого эффекта.
Если нам необходимо подключить светодиод к сети постоянного напряжения, то такая задача решается очень просто – ставим ограничительный резистор и забываем. Светодиод как работал “в прямом направлении” так и будет работать.
Если же нам необходимо использовать сеть 220 В для подключения LED, то на него будет уже воздействовать обратная полярность. Это хорошо видно, взглянув на график синусоиды, где каждый полупериод синусоида имеет свойство менять свой знак на противоположный.
В данном случае мы не получим свечение в этом полупериоде. В принципе, ничего страшного))), но светодиод выйдет из строя очень быстро.
Вообще гасящий резистор стоит выбирать из условия расчетного напряжения в 310 В. Объяснять почему так – муторное занятие, но стоит просто это запомнить, т.к.
действующее значение напряжения составляет 220 В, а амплитудное уже увеличивается на корень из двух от действующего. Т.е. таким образом мы получаем приложенное прямое и обратное напряжение к светодиоду.
Резистор подбирается на 310В обратной полярности, дабы защитить светодиод. Каким образом можно произвести защиту мы посмотрим ниже.
к оглавлению ↑
Как подключить светодиоды к 220 В по простой схеме, используя резисторы и диод – вариант 1
Первая схема работает по принципу гашения обратного полупериода. Подавляющее большинство полупроводников отрицательно относятся к обратному напряжение. Для блокировки его нам нужен диод. Как правило, в большинстве случаев используют диоды типа IN4004, рассчитанный на напряжение больше 300 В.
к оглавлению ↑
Подключение LED по простой схеме с резистором и диодом – вариант 2
Другая простая схема показывает, как подключить светодиоды к 220 В переменного напряжения не намного сложнее и ее также можно отнести к простым схемам.
Рассмотрим принцип работы. При положительной полуволне ток идет сквозь резисторы 1 и 2, а также сам светодиод.
В данном случае стоит помнить, что падение напряжения на светодиоде будет обратным для обычного диода – VD1. Как только в схему “попадает” отрицательная полуволна 220 В, ток пойдет через обычный диод и резисторы.
В этом случае уже прямое падение напряжение на VD1 будет обратным по отношению к светодиоду. Все просто.
При положительной полуволне сетевого напряжения ток протекает через резисторы R1, R2 и светодиод HL1 (при этом прямое падение напряжения на светодиоде HL1 является обратным напряжением для диода VD1). При отрицательной полуволне сетевого напряжения ток протекает через диод VD1 и резисторы R1, R2 (при этом прямое падение напряжения на диоде VD1 является обратным напряжением для светодиода HL1).
к оглавлению ↑
Расчетная часть схемы
Номинальное напряжение сети:
UС.НОМ = 220 В
Принимается минимальное и максимальное напряжение сети (опытные данные):
UС.МИН = 170 В
UС.МАКС = 250 В
Принимается к установке светодиод HL1, имеющий максимально допустимый ток:
IHL1.ДОП = 20 мА
Максимальный расчетный амплитудный ток светодиода HL1:
IHL1.АМПЛ.МАКС = 0,7*IHL1.ДОП = 0,7*20 = 14 мА
Падение напряжения на светодиоде HL1 (опытные данные):
UHL1 = 2 В
Минимальное и максимальное действующее напряжение на резисторах R1, R2:
UR.ДЕЙСТВ.МИН = UС.МИН = 170 В
UR.ДЕЙСТВ.МАКС = UС.МАКС = 250 В
Расчетное эквивалентное сопротивление резисторов R1, R2:
RЭКВ.РАСЧ = UR.АМПЛ.МАКС/IHL1.АМПЛ.МАКС = 350/14 = 25 кОм
Максимальная суммарная мощность резисторов R1, R2:
PR.МАКС = UR.ДЕЙСТВ.МАКС2/RЭКВ.РАСЧ = 2502/25 = 2500 мВт = 2,5 Вт
Расчетная суммарная мощность резисторов R1, R2:
PR.РАСЧ = PR.МАКС/0,7 = 2,5/0,7 = 3,6 Вт
Принимается параллельное соединение двух резисторов типа МЛТ-2, имеющих суммарную максимально допустимую мощность:
PR.ДОП = 2·2 = 4 Вт
Расчетное сопротивление каждого резистора:
RРАСЧ = 2*RЭКВ.РАСЧ = 2*25 = 50 кОм
Принимается ближайшее большее стандартное сопротивление каждого резистора:
R1 = R2 = 51 кОм
Эквивалентное сопротивление резисторов R1, R2:
RЭКВ = R1/2 = 51/2 = 26 кОм
Максимальная суммарная мощность резисторов R1, R2:
PR.МАКС = UR.ДЕЙСТВ.МАКС2/RЭКВ = 2502/26 = 2400 мВт = 2,4 Вт
Минимальный и максимальный амплитудный ток светодиода HL1 и диода VD1:
IHL1.АМПЛ.МИН = IVD1.АМПЛ.МИН = UR.АМПЛ.МИН/RЭКВ = 240/26 = 9,2 мА
IHL1.АМПЛ.МАКС = IVD1.АМПЛ.МАКС = UR.АМПЛ.МАКС/RЭКВ = 350/26 = 13 мА
Минимальный и максимальный средний ток светодиода HL1 и диода VD1:
IHL1.СР.МИН = IVD1.СР.МИН = IHL1.ДЕЙСТВ.МИН/КФ = 3,3/1,1 = 3,0 мА
IHL1.СР.МАКС = IVD1.СР.МАКС = IHL1.ДЕЙСТВ.МАКС/КФ = 4,8/1,1 = 4,4 мА
Обратное напряжение диода VD1:
UVD1.ОБР = UHL1.ПР = 2 В
Расчетные параметры диода VD1:
UVD1.РАСЧ = UVD1.ОБР/0,7 = 2/0,7 = 2,9 В
IVD1.РАСЧ = UVD1.АМПЛ.МАКС/0,7 = 13/0,7 = 19 мА
Принимается диод VD1 типа Д9В, имеющий следующие основные параметры:
UVD1.ДОП = 30 В
IVD1.ДОП = 20 мА
I0.МАКС = 250 мкА
к оглавлению ↑
Минусы использования схемы подключения светодиодов к 220 В по варианту 2
Главные недостатки подключения светодиодов по этой схеме – малая яркость светодиодов, за счет малого тока. IHL1.СР = (3,0-4,4) мА и большая мощность на резисторах: R1, R2: PR.МАКС = 2,4 Вт.
к оглавлению ↑
Вариант 3 подключения LEDs к электрической сети переменного напряжения 220 В
При положительном полупериоде ток протекает через резистор R1, диод и светодиод. При отрицательном ток не протекает, т.к. диод в этом случае включается в обратное направление.
Расчет параметров схемы аналогичен второму варианту. Кому надо – посчитает и сравнит. Разница небольшая.
к оглавлению ↑
Минусы подключения по 3 варианту
Если самые “пытливые умы” уже посчитали, то могут сравнить данные со вторым вариантом. Кому лень – придется поверить на слово. Минус такого подключения – также низкая яркость светодиода, т.к. ток протекающий через полупроводник составляет всего IHL1.СР = (2,8-4,2) мА.
Зато при такой схеме мы получаем заметное снижение мощности резистора: РR1.МАКС = 1,2 Вт вместо 2,4 Вт полученных ранее.
к оглавлению ↑
Подключение светодиода на 220 В с использованием диодного моста – 4 вариант
Как видно на графической картинке, в данном случае для подключения на 220 мы используем резисторы и диодный мост.
В данном случае ток через 2 резистора и светодиод ток будет протекать как при положительной, так и при отрицательной полуволне синусоиды за счет использования выпрямительного моста на диодах VD1-VD4.
UVD.РАСЧ = UVD.ОБР/0,7 = 2,6/0,7 = 3,7 В
IVD.РАСЧ = UVD.АМПЛ.МАКС/0,7 = 13/0,7 = 19 мА
Принимаются диоды VD1-VD4 типа Д9В, имеющие следующие основные параметры:
UVD.ДОП = 30 В
IVD.ДОП = 20 мА
I0.МАКС = 250 мкА
к оглавлению ↑
Недостатки схемы подключения по 4 варианту
Если все рассчитать по приведенным выше формулам, то можно провести аналогию со 2 вариантом подключения. Минусом будет большая мощность на резисторах: PR.МАКС = 2,4 Вт.
Однако при такой схеме мы получим заметное увеличение яркости светодиода: HL1: IHL1.СР = (5,9-8,7) мА вместо (2,8-4,2) мА
В принципе, это самые распространенные схемы, которые нам показывают как подключить светодиоды к 220 В с применением обычного диода и резисторов. Для простоты понимания были приведены расчеты. Не для всех, может быть понятные, но кому надо, тот найдет, прочитает и разберется. Ну а если нет, то достаточно будет простой графической части.
к оглавлению ↑
Как подключить светодиод к 220 В используя конденсатор
Выше мы посмотрели, как легко, используя только диоды и резисторы, подключить к сети 220 В любой светодиод. Это были простые схемы. Сейчас посмотрим на более сложные, но лучшие в плане реализации и долговечности. Для этого нам понадобится уже конденсатор.
Токоограничивающий элемент – конденсатор. На схеме – C1. Конденсатор должен быть рассчитан на работу с напряжением не менее 400 В. После зарядки последнего ток через него будет ограничивать резистор.
к оглавлению ↑
Подключение светодиода к сети 220 В на примере выключателя с подсветкой
Сейчас уже никого не удивишь выключателем с интегрированной подсветкой в виде светодиода. Разобрав его и разобравшись мы получим еще один способ, благодаря которому можем подключить любой светодиод к сети 220 В.
Во всех выключателях с подсветкой используется резистор с номиналом не менее 20 кОм. Ток в этом случае ограничивается порядка 1А. При включении в сеть такой светодиод будет светиться. Ночью его легко можно различить на стене.
Обратный же ток в этом случае будет очень маленьким и не сможет повредить полупроводник. В принципе, такая схема также имеет право на существование, но свет от такого диода будет все-таки ничтожно маленьким.
И стоит ли овчинка выделки – не понятно.
к оглавлению ↑
Видео на тему подключения светодиода к сети 220 В
Ну и в конце всего длинного поста посмотрим видео на тему : “как подключить светодиоды к 220 В”. Для тех, кому лень все читать было.
Источник: https://leds-test.ru/kak-podklyuchit-svetodiody-k-220-volt-elektricheskoj-seti/
Как включить светодиод в 220В: способы интеграции, схемы питания и особенности подключения
Светодиоды — неотъемлемая часть электроники, позволяющая осуществлять индикацию состояния приборов.
В зависимости от цвета и расположения на корпусе светоизлучающие диоды сигнализируют о состоянии зарядки, подключении гаджета к сети и т. п. Но бывают ситуации, когда в приборе отсутствует штатная сигнализация, а человеку она нужна.
Тогда и встаёт вопрос о том, как включить светодиод в 220 В, не используя понижающих напряжение трансформаторных устройств.
Светодиод представляет собой радиотехнический элемент, пропускающий ток, как и стандартный диод, только в одном направлении, но при этом излучающий электромагнитные волны в видимом диапазоне.
Если осуществлять интеграцию такого диода в сеть с постоянным током, то важно не перепутать «плюс» и «минус».
Внедрение же светового диода в переменную сеть и решение вопроса о том, как запитать светодиод от сети 220 В, где периодически (с частотой 50 Гц) происходит изменение направления тока и напряжения, потребует дополнительных расчётов.
Электрическое сопротивление светодиода, как и любого полупроводникового элемента, не линейно и зависит от величины разности потенциалов, приложенной к нему.
Для сети с переменным током и напряжением 220 В с приемлемой точностью можно взять усреднённое значение в 1,7 Ом.
Тогда, согласно закону Ома, величина тока, который будет проходить через полупроводниковый кристалл диода, если его подключить напрямую к сети, будет примерно равна 65 ампер (110/1,7).
Такой показатель просто приведёт к сжиганию прибора. Для уменьшения величины тока, проходящего через полупроводник, потребуется последовательное включение в цепь рядом со световым диодом сопротивления.
Для этой цели применяют исключительно резисторы в цепях с постоянным напряжением, а с переменным током есть возможность применять так называемые реактивные сопротивления — конденсаторы и катушки индуктивности. Сопротивление они создают благодаря накапливанию электромагнитной энергии в первый полупериод (ток протекает в одном направлении) и возвращению её в сеть во втором полупериоде (при обратном течении электрического тока).
Подключение через резистор
Подобная схема обычно реализуется для индикации работы электротехнических устройств. Она используется в световом сигнале, свидетельствующем о включении в сеть электрочайника, в подсветке кнопки выключателя и т. д. Главными достоинствами этого варианта интеграции светящегося диода в сеть считаются относительная дешевизна, простота и надёжность.
Но есть в этой схеме один нюанс. Он заключается в необходимости гашения обратного напряжения, так как его избыток может привести к выходу из строя полупроводникового прибора. С этой задачей легко справляются кремниевые диоды, которые способны пропускать ток по величине не меньше того, что проходит в сети. Подключить их можно в цепь двумя способами:
- последовательно, то есть после резистора и перед светодиодом, но соблюдая полярность;
- параллельно со светящимся диодом, но изменив полярность на 180 градусов.
Применение конденсатора
Негативной стороной использования резистора для уменьшения тока при включении в цепь 220 В светодиода является довольно существенное рассеивание мощности.
Эта проблема становится заметной при нагрузке с большим током потребления. Решением является схема подключения светодиода к 220 В, где реализуется интеграция неполярного конденсатора вместо резистора.
Сопротивление конденсаторов имеет реактивный характер, что исключает рассеивание мощности.
Подключение конденсатора в схему светодиода с целью токоограничения имеет один нюанс, который может привести к выходу из строя светового диода, — сохранение накопленного заряда после отключения питания сети. Из-за этого в схему с неполярным конденсатором добавляют:
- два резистора;
- диод, подключённый параллельно светодиоду, но в обратном направлении.
Эти способы подключения применимы к маломощным светодиодам, которые используются для индикации или подсветки. Подключение мощных диодных элементов, предназначенных для светодиодных ламп освещения, осуществляется схемами с использованием спецблоков питания (драйверов).
Источник: https://220v.guru/vse-ob-elektroenergii/svetodiodnoe-osveschenie/kak-vklyuchit-v-set-svetodiod-v-220v.html
Светодиодная лампа 220 В: устройство, как подключить, сделать, отремонтировать
Уже на протяжении многих лет мы применяли обычные лампы накаливания для освещения дома, квартиры, офиса или промышленного предприятия.
Однако с каждым днем цены на электроэнергию стремительно растут, что заставляет нас отдавать предпочтение более энергоэффективным устройствам, обладающим высоким КПД, длительным сроком службы и способными создавать необходимый световой поток с минимальными затратами.
Именно к таким устройствам относятся светодиодные лампы на 220 вольт, преимущества которых мы постараемся раскрыть в полном объеме в данной статье.
Самая простая схема
Светодиодная лампа на 220 В — это одна из разновидностей ламп освещения, световой поток в которой создается за счет преобразования электрической энергии в световой поток с помощью кристалла светодиода. Для работы светодиодов от стационарной бытовой сети 220 В необходимо собрать самую простейшую схему, изображенную ниже на рисунке.
Схема светодиодной лампы на 220 вольт состоит из источника переменного напряжения 220–240 В, выпрямительного моста для преобразования переменного тока в постоянный, ограничительного конденсатора С1, конденсатора для сглаживания пульсаций С2 и светодиодов, подключаемых последовательно от 1-го до 80 штук.
Принцип работы
При подаче переменного напряжения 220 В переменной частоты (50 Гц) на драйвер светодиодной лампы, оно проходит через токоограничивающий конденсатор С1 на выпрямительный мост, собранный из 4-х диодов.
После этого на выходе моста мы получаем постоянное выпрямленное напряжение, требующееся для работы светодиодов. Однако для получения непрерывного светового потока, в драйвер необходимо добавить электролитический конденсатор C2 для сглаживания пульсаций, возникающих при выпрямлении переменного напряжения.
Глядя на устройство светодиодной лампы на 220 вольт, мы видим, что там присутствуют сопротивления R1 и R2. Резистор R2 служит для разрядки конденсатора для защиты от пробоя при выключенном питании, а R1 — для ограничения тока, подаваемого на светодиодный мост при включении.
Схема с дополнительной защитой
Также в некоторых схемах есть дополнительное сопротивление R3, расположенное последовательно светодиодам. Оно служит для защиты от бросков тока в цепях светодиодов. Цепочка R3—C2 представляет классический фильтр низкой частоты (НЧ).
Схема с активным ограничителем тока
В этом варианте схемы ограничивающим ток элементом является сопротивление R1. Такая схема будет иметь показатель коэффициента мощности или cos φ близкий к единице, в отличие от предыдущих вариантов с токоограничивающим конденсатором, представляющих из себя реактивную нагрузку. Недостаток такого варианта в необходимости рассеивать значительное количество тепла на резисторе R1.
Для разрядки остаточного напряжения конденсатора C1 до нуля в схеме применен резистор R2.
Устройство светодиодных ламп для цепей переменного тока напряжением 220В
Светодиодные лампочки состоят из следующих компонентов:
- Цоколя (Е27, Е14, Е40 и так далее) для вкручивания в патрон светильника, бра или люстры;
- Диэлектрической прокладки между цоколем и корпусом;
- Драйвера, на котором собрана схема для преобразования переменного напряжения в постоянного необходимой величины;
- Радиатора, который служит для отвода тепла от светодиодов;
- Печатной платы, на которую впаиваются светодиоды (типоразмеров SMD5050, SMD3528 и так далее);
- Резисторов (чипы) для защиты светодиодов от пульсирующего тока;
- Светорассеивателя для создания равномерного светового потока.
Как подключить светодиодные лампы на 220 вольт
Самая большая хитрость при подключении светодиодных ламп на 220 в, что никакой хитрости нет. Подключение происходит абсолютно точно также, как вы это делали с лампами накаливания или компактными люминесцентными лампами (КЛЛ).
Для этого: обесточьте цоколь, а затем вкрутите в него лампу. При установке никогда не касайтесь металлических частей лампы: помните, что иногда нерадивые электрики вместо фазы могут провести через выключатель ноль.
В таком случае, фазное напряжение никогда не будет сниматься с цоколя.
Производители выпустили светодиодные аналоги всех, выпускавшихся ранее типов ламп с самыми разными цоколями: Е27, Е14, GU5.3 и так далее. Принцип установки для них остается такой же.
Если же Вы купили светодиодную лампочку, рассчитанную на 12 или 24 Вольта, тогда Вам не обойтись без блока питания. Подключение источников света производится параллельно: все «плюсы» лампочек вместе к плюсовому выходу блока питания, а все «минусы» вместе — к «минусу» блока питания.
В данном случае, важно соблюдать полярность («плюс» — к «плюсу», «минус» — к «минусу»), поскольку светодиоды будут испускать световой поток только в том случае, если соблюдена полярность! Некоторые изделия при переполюсовке могут выйти из строя.
Например, у вас есть мебельная подсветка на кухне, в гардеробе или в другом месте, составленная из 4-х галогенных ламп мощностью 40 Вт и напряжением 12 В, запитанных от трансформатора. Вы решили заменить эти лампы на светодиодные 4 штуки по 4–5 Вт.
Иногда подобные светодиодные лампы для точечных светильников в большинстве случаев комплектуются блоком питания на заводе-изготовителе. При покупке таких ламп следует одновременно озадачиться и покупкой источника питания.
Как сделать простую светодиодную лампочку
Для того, чтоб собрать светодиодную лампу нам потребуется старая люминесцентная лампа, точнее ее основание с цоколем, длинный кусок 12 В светодиодной ленты,и пустая алюминиевая 330 мл банка
Для питания такой лампы понадобится источник постоянного напряжение на 12 В такого размера, чтобы без проблем вошел внутрь банки.
Итак, теперь само изготовление:
- Обмотайте лентой банку, как показано на рисунке.
- Припаяйте провода от светодиодной ленты к выходу источника питания (ИП).
- Вход ИП проводами припаяйте к цоколю основания лампы.
- Сам источник надежно закрепите внутри банки, предварительно вырезав достаточное по размеру отверстие для пропускания ИП внутрь.
- Приклейте банку с лентой к основанию корпуса с цоколем и лампа готова.
Конечно, такая лампа не шедевр дизайнерского искусства, но зато сделана своими руками!
Основные неисправности светодиодных ламп на 220 вольт
Исходя из многолетнего опыта, если не горит светодиодная лампа 220 в, то причины могут быть следующими:
1. Выход из строя светодиодов
Поскольку в светодиодной лампе все светодиоды подключены последовательно, если выходит хотя бы один из них, вся лампочка перестает светится поскольку возникает обрыв цепи. В большинстве случаев светодиоды в лампах на 220 применяются 2-х типоразмеров: SMD5050 и SMD3528.
Для устранения этой причины необходимо найти вышедший из строя светодиод и заменить его на другой, или же поставить перемычку (перемычками лучше не злоупотреблять — так как они могут увеличить ток через светодиоды в некоторых схемах). При решении проблемы вторым способом незначительно уменьшится световой поток, однако лампочка опять станет светить.
Чтоб найти поврежденный светодиод нам понадобится источник питания с низким током (20 мА) или мультиметр.
Для этого подаем «+» на анод, а «–» на катод. Если светодиод не засветится, значит он вышел из строя. Таким образом нужно проверить каждый из светодиодов лампы. Также вышедший из строя светодиод можно определить визуально, это выглядит примерно так:
Причиной данной поломки в большинстве случаев является отсутствие какой-либо защиты светодиода.
2. Выход из строя диодного моста
В большинству случаев при таковой неисправности основная причина — заводской брак. И в таком в случае зачастую «вылетают» и светодиоды. Для решения данной проблемы необходимо заменить диодный мост (или диоды моста) и проверить все светодиоды.
Чтобы проверить диодный мост необходим мультиметр. Необходимо подать на вход моста переменное напряжение 220 В, и проверить напряжение на выходе. Если на выходе оно остается переменным, то значит диодный мост вышел из строя.
Если диодный мост собран на отдельных диодах, их можно поочередно выпаять и проверить прибором. Диод должен пропускать ток только в одном направлении. Если он вообще не пропускает ток или пропускает при подаче на катод положительной полуволны значит он вышел из строя и требует замены.
3. Плохая пайка выводных концов
В данном случае нам будет необходим мультиметр. Нужно разобраться в схеме светодиодной лампы и далее проверять все точки, начиная со входного напряжения 220 В и заканчивая выводами светодиодов. Исходя из опыта, данная проблема присуща дешевым светодиодным лампам и чтоб ее устранить достаточно паяльником дополнительно пропаять все детали и компоненты.
Заключение
Светодиодная лампа 220 в — это энергоэффективное устройство, обладающее хорошими техническими характеристиками, простой конструкцией и легкой эксплуатацией, что позволяет их использования как в домашних, так и промышленных условиях.
Также стоит отметить, чтоб при наличии некоторых приспособлений, образования и опыта можно определить неисправности светодиодных ламп на 220 вольт и с минимальными затратами устранить их.
Видео по теме
Источник: https://ProFazu.ru/svet/light/svetodiodnaya-lampa-220-v.html
Как подключить светодиод к 220в: схемы, ошибки, нюансы, видео
Обычно светодиоды подключаются к 220В при помощи драйвера, рассчитанного под их характеристики. Но если требуется подключить только один маломощный светодиод, например, в качестве индикатора, то применение драйвера становится нецелесообразным. В таких случаях возникает вопрос — как подключить светодиод к 220 В без дополнительного блока питания.
Основы подключения к 220 В
В отличие от драйвера, который питает светодиод постоянным током и сравнительно небольшим напряжением (единицы-десятки вольт), сеть выдает переменное синусоподобное напряжение с частотой 50 Гц и средним значением 220 В. Поскольку светодиод пропускает ток только в одну сторону, то светиться он будет только на определенных полуволнах:
То есть led при таком питании светится не постоянно, а мигает с частотой 50 Гц. Но из-за инерционности человеческого зрения это не так заметно.
В то же время напряжение обратной полярности, хотя и не заставляет led светиться, все же прикладывается к нему и может вывести из строя, если не предпринять никаких защитных мер.
Способы подключения светодиода к сети 220 В
Самый простой способ (читайте про все возможные способы подключения led) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.
Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.
Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более)
Рассмотрим схему подключения более подробно.
В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.
Такой вариант подключения наглядно показан в этом ролике:
Также здесь описывается, как определить расположение анода и катода у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.
Шунтирование светодиода обычным диодом
Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.
Встречно-параллельное подключение двух светодиодов:
Схема подключения выглядит следующим образом:
Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.
Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.
Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:
9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.
То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.
Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.
В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.
Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора.
Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1.
R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.
Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.
Емкость конденсатора рассчитывается по эмпирической формуле:
где U – амплитудное напряжение сети (310 В),
I – ток, проходящий через светодиод (в миллиамперах),
Uд – падение напряжения на led в прямом направлении.
Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:
Нюансы подключения к сети 220 В
При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:
Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока.
При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время.
Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.
Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:
При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.
Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:
В обоих случаях нужно будет пересчитать величину емкости конденсатора, т.к. возрастет напряжение на светодиодах.
Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:
Здесь показано, почему нельзя:
- включать светодиод напрямую;
- последовательно соединять светодиоды, рассчитанные на разный ток;
- включать led без защиты от обратного напряжения.
Безопасность при подключении
При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению.
Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам.
Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.
В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.
Заключение
Описанные здесь способы подключения светодиодов в сеть 220В целесообразно применять только при использовании маломощных светоизлучающих диодов в целях подсветки или индикации.
Мощные led так подключать нельзя, поскольку нестабильность сетевого напряжения приводит к их быстрой деградации и выходу из строя.
В таких случаях нужно применять специализированные блоки питания светодиодов – драйверы.
Источник: http://ledno.ru/svetodiody/podklyuchenie-led-k-220-v.html
Светодиоды с прямым питанием от 220В — DRIVE2
Светодиоды наступают! Проникая в сегмент домашнего освещения, производители светодиодов стараются облегчить жизнь производителям LED лампочек. В результате начинают появляться вот такие интересные изделия. alled.ru/samsung-ac-220v-led-c-220.
html
Принцип прост: берем маломощные LED кристаллы и набираем из них цепочку, рассчитанную на работу от 220В, но т.к. напряжение у нас переменное, то варианта два: выпрямитель или две таких цепочки, включенные встречно-параллельно.
В данной матрице используется именно второй вариант.
Картинка из даташита.
Причем цепочки разбили на две части. Это позволяет подключать матрицу как к сети 110В при параллельном включении цепочек, так и к 220В, соединив цепочки последовательно
Чертеж матрицы.
Недостаток такого решения очевиден: матрица питается переменным напряжением, соответственно мерцает. Забегая вперед скажу, что на глаз это не заметно, но постоянно смотреть на свет такой лампы я бы не стал. Второй косяк именно этой партии, цветовая температура 5000К, тоже мало подходит для жилых помещений.
По этому решено было изготовить пару лампочек для малообитаемых помещений, так сказать – коридор и туалет.Подходящие, круглые радиаторы у меня были куплены давно для других целей, но до сих пор лежали без дела. Под их размеры были изготовлены платы из фольгированного алюминия.
Просверлил крепежные отверстия, отверстие для проводов. На плате, кроме площадки под сам светодиод, сделаны площадки под провода и под четыре резистора SMD1206.
Почему четыре, потому что изучение даташита привело к тому, что на балласте будет падать около 0,7Вт тепла, так что SMD1206 с допустимой мощностью 0,25Вт – наш выбор.Платы были залужены и намазаны безотмывочным (со слов китайцев) флюсом.
Потом я разложил по местам компоненты и напаял их, нагрев плату на утюге. Знаю, что не айс, но технология уже проверенная, если работать аккуратно, то все нормально, пока еще ничего не спалил.
Готовые модули. Один из них уже прикручен к радиатору.
А вот дальше я несколько дней искал донора, с которого можно было бы снять цоколь. В итоге начал рыться в коробке с лампочками и одна энергосберегайка оказалась дохлой. Расковырял её, оставил только цоколь с проводами. Приятным бонусом оказался предохранитель (предположительно) впаянный в разрыв одного из проводов. Припаял провода, заизолировал термоусадкой. Далее немного подрезал пластиковый корпус бывшей лампы, вставил туда радиатор. Радиатор вписался идеально. Есть подозрение, что эти радиаторы не случайно имеют именно такой размер. Зафиксировал банально – термопистолетом. После остывания, обрезал излишки клея и наша лампа готова!
Такая маленькая, няшная лампочка!
Лампа получилась очень компактной (50мм в диаметре, 70мм в длину вместе с цоколем) и, на мой взгляд, вполне симпатичной.
Отдельный вопрос, это подбор балласта. В даташите целых две таблицы на эту тему. Даются зависимости тока от величины сопротивления при различных схемах включения (110 или 220В) и различных бинах светодиода по значению напряжения.
Бин данных экземпляров мне неизвестен, по этому пришлось экспериментировать. При 2кОмах ток был около 20мА. Маловато, можно больше (до 29мА, рекомендуемый то 22мА). Поставил килоом, ток подскачил до 30мА. В итоге остановился на величине 1,6кОм. На прогретой лампе я намерил 22,5…23,0мА. То, что надо. Теперь самое интересное, как это светит.
Лампа потребляет около 5Вт, из них на сам кристалл приходится менее 4,5Вт. Производитель заявляет световой поток 350…450Лм, по этому я рассчитывал на замену лампы накаливания мощностью 40Вт. А когда поставил лампочку в коридор, немного обалдел. Смотрим фото. Все фотографии сделаны с одинаковыми настройками экспозиции..
Света практически одинаково! За лампой (левая стена на фото) света, конечно, меньше, т.к. все же лампочка получилась направленной, но я и не ждал от неё конкуренции 75(!) ваттной лампе накаливании! Мерцание видно только, если его искать специально. Радиатор прогревается сильно, но не критично (палец терпит, но не долго). Результатом доволен.
UPD Год спустя. Прошло чуть больше года, все это время лампа работает круглые сутки, это около 9000 часов. Я делал две таких лампы, вторая все это время лежала без дела. У рабочей лампы пошла трещинами линза (видимо радиатор все-же маловат. Позже фото выложу), но светит она по-прежнему исправно.
Переставил её в другое место, а на её место ввернул новую. Новая светит чуть поярче, т.е. старая “износилась” не сильно.
UPD 4 года спустя. Вторая лампа, ввернутая заместо первой светит по сей день. Что там с ней визуально, не знаю, не лазил. Первая лампа так и работает в туалете и, видимо, будет работать вечно, т.к. там она не успевает прогреться.
Источник: https://www.drive2.ru/b/9677/
Люстры и светильники из США в сети 220В
31 Марта 2014
Купить люстры и светильники из США с доставкой через Soroka-Vorovka очень просто. Больше того, многие светильники, бра и настольные лампы мы можем отправить в вашу страну по самому экономному тарифу.
Большие «дворцовые» люстры из США доставляем грузовыми отправками самым удобным способом.
Однако нередко заказчики спрашивают, а подходят ли вообще американские светильники на 110В к сети с напряжением 220В?
Светильники из США, рассчитанные на «американское» напряжение 110В, можно без особых проблем эксплуатировать в сети 220В. Давайте сначала условно разделим все осветительные приборы на четыре типа и попробуем решить проблему самым простым путем – заменой лампочек и электроники, если она есть. То есть, адаптируем сам светильник.
Тип лампы в осветительном приборе в США | Что сделать в Старом свете |
обычные лампы накаливания или галогенкина 110В вне зависимости от цоколя | Просто заменить комплектные лампы 110В на аналогичные, рассчитанные на 220В |
галогенные лампы на 12Вс понижающим трансформатором 110В-12В | Просто заменить трансформатор на аналогичный 220В-12В, комплектные лампы менять не нужно |
лампы дневного света с дросселеми пусковым устройством (стартером) на 110В | Заменить дроссель и стартер на аналогичные, рассчитанные на 220В, комплектные лампы менять не нужно |
энергосберегающие лампы на 110Ввне зависимости от цоколя | Просто заменить комплектные лампы 110В на аналогичные, рассчитанные на 220В – вся электроника в них встроенная |
В табличке приведены самые простые и очевидные выходы из ситуации. Но они срабатывают не всегда.
Цоколь Е26 и Е27
Лампочки в США слегка отличаются от лампочек Старого света, включая Россию, Украину, Беларусь, Казахстан и т.д.. В США и Канаде используется, скажем так, «лампочка Эдисона», а в Евразии «лампочка Ильича».
Кроме очевидных «классовых» различий между лампами накаливания, есть и конструктивные, а именно – диаметр цоколя. Лампа Эдисона имеет цоколь Е26, а лампа Ильича – цоколь Е27, где цифра обозначает диаметр в миллиметрах.
У лампочек размера миньон различия больше – Е12 в США и Е14 в Евразии.
Таким образом, если к патрону под лампу Эдисона с цоколем Е26 лампочка Ильича в большинстве случаев подойдет без проблем, то с патронами под миньоны проблемы возникнут обязательно – лампа с европейским цоколем в них не влезет. Вариантов тут два: заменить патроны под «наши» лампы, либо адаптировать сеть под светильник.
С заменой патрона справится и пятиклассник, если он не прогуливал уроки технологии в школе. Однако чаще наших заказчиков интересуют дизайнерские светильники из США, например, очень популярны люстры Restoration Hardware, где аутентичные лампы Эдисона сами по себе являются декоративными элементами. Собственно, ради этих ламп все и затевалось.
Для таких люстр нужно адаптировать электрическую сеть, а запасные лампы заказывать сразу при покупке светильника в США.
Вот такая роскошная лампа накаливания, которая является высокотехнологичной репликой лампы Эдисона 1910 года – знаменитой squirrel cage (беличья клетка), стоит $12 и рассчитана примерно на год.
Конечно, если заменить ее на обычную 100-ваттную лампу накаливания, светильник лишится своего винтажного очарования и оригинальности.
Поэтому для монтажа таких люстр и светильников придется пригласить электрика, который установит понижающий трансформатор 220В/110В.
Поскольку напряжение нужно понизить всего вдвое, то длиной провода мы не сильно ограничены, и трансформатор можно вынести куда-нибудь на общий электрощит помещения.
Установка понижающего трансформатора не только позволит использовать американские светильники без переделки, но и убережет их от перепадов напряжения в сети, то есть, продлит ресурс ламп накаливания.
Если речь идет о светильниках со стандартными лампами накаливания на 110В, то в нашей сети с понижающим трансформатором их можно использовать вообще без проблем. Сами лампочки «американского стандарта», то есть, для сети 110В с цоколями Е26 и Е12 сейчас продаются во многих оффлайн- и во всех интернет-магазинах бытовой электроники.
Вот эти роскошные люстры с вручную отполированными хрустальными подвесками можно без проблем использовать с понижающим трансформатором и «американскими» лампами, а можно заменить патроны под стандартные лампы.
То есть, можно оставить от “американской” люстры только великолепную декоративную конструкцию, а патроны и лампочки поставить обычные.
Итого: как подключить светильники и люстры из США к сети на 220В
Способов, как видим, три:
- Если позволяет патрон – заменить только комплектные лампочки;
- Заменить и патрон, и комплектные лампочки;
- Ничего не менять в люстре, но установить понижающий трансформатор в сети.
Понятно, что если речь идет о лампах малой мощности на 12В, то придется заменить еще и встроенный трансформатор в самом светильнике, без которого они не работают. Это простая операция, которая не потребует привлечения специалиста.
Ваш посредник в США Soroka-Vorovka предлагает люстры и светильники из США на самых выгодных условиях. Вы можете заказать одну люстру и светильники на весь дом, офис или коммерческое помещение. Чем крупнее партия – тем выгоднее доставка из расчета доллар/кг. Мы доставим светильники из США авиа или морем, отправим посылку или груз по выгодным тарифам благодаря статусу known shipper.
Источник: https://soroka-vorovka.com/blog/ljustry-i-svetilniki-iz-usa-set-220v
Подключение техники на 110В к сети 220В – Asterisco. Путёвые заметки
С этой проблемой часто сталкиваются те, кто приобретает технику в США или Японии. Причем если компьютерные блоки питания обычно универсальные – 110/200В, то другой аппаратуре может потребоваться именно 110В.
Как-то раз на одном из американских сайтов был приобретен аккумуляторный мини-пылесос Hoover Platinum. Пылесос был выбран по причине емкого Li-Ion аккумулятора, высокой мощности всасывания и безмешковой технологии циклон.
Поскольку Hoover производит продукцию не только для американского рынка, то была слабая надежда на то, что пылесос будет укомплектован универсальным зарядным устройством, но это оказалось не так – на заряднике было написано 110В/60Гц/0,65А.
Соответственно возможны были несколько вариантов:
- Блок питания мог быть реально универсальным, если именно эта модель пылесоса поставлялась на другие рынки. Проверить можно было включив его в розетку с риском того, что блок питания сгорит.
- Разобрать блок питания и переделать его на 220В. Чаще всего в импульсных блоках питания для этих целей достаточно поменять конденсатор (поставить на 400В) и варистор (с напряжением пробоя в 360-390В). Если есть сложности с подбором варистора, то можно вообще его убрать.
- Купить понижающий трансформатор соответствующей мощности. В моем случае не менее 75Вт. Важно: мощность потребления нужно определять не по указанной мощности на шильдике, а умножать силу тока (в моем случае 0,65А) на напряжение (соответственно 110В). Поскольку большинство трансформаторов китайские, то к полученному результату стоит добавить 10-20% запаса.
Если бы у меня было не зарядное устройство, а что-то без электронных схем – чайник, тостер, настольная лампа и т.п., то можно было бы купить тиристорный регулятор напряжения за сущие копейки. Экзотические варианты типа резисторов не рассматриваются в принципе.
Поскольку я не силен в схемотехнике импульсных блоков питания, то вариант с перепаиванием блока питания отпал сам собой. Если бы было на 100% известно, что в моем случае достаточно поменять конденсатор (как в случае с популярным пылесосом iRobot), то можно было бы попробовать, но такой уверенности не было, а проводить эксперименты не хотелось. Поэтому было решено купить трансформатор.
Еще одним доводом пользу трансформатора было то, что можно было и дальше покупать всякие бытовые вещи, сделанные для американского рынка.
Вариантов трансформаторов глобально два:
- Отечественные – выдают те параметры выходного напряжения, которые на них указаны, обычно мощные, а следовательно занимают много места и стоят недешево. Такой, например, потребуется для подключения миксера KitchenAid Artisan. Правда на разницу в цене – 299 US$ там и 25-30 тыс. руб. тут можно купить несколько понижающих трансформаторов по 3,5-4 тыс. руб. Не говоря уже о том, что, например, модель KitchenAid Professional 600 (449 US$ там) в исполнении 220В не купить в принципе.
- Китайские – выходная мощность может быть ниже заявленной, невысокой максимальной мощности, но зато недорогие и небольшого размера.
Экзотика типа найти у бабушки от старого ТВ/холодильника или собрать самому не рассматриваются.
Почитав отзывы, я пришел к выводу, что самые приличные из китайских трансформаторы Robiton, оный и был куплен за 850 руб. в версии на 150Вт. В линейке трансформаторов есть 45, 70, 100 и 150Вт, но 70Вт было маловато, а версии на 100Вт не было в наличии.
Трансформатор небольшой, оборудован розеткой под американский стандарт – то есть никаких дополнительных переходников покупать не надо.
При подключении американской техники есть еще один нюанс, который заключается в том, что американская электросеть 110В/60Гц, а наша – 220В/50Гц. И если преобразовать 220В в 110В можно без особых затрат, то получить 60Гц будет гораздо дороже.
Правда мне даже теоретически сложно представить бытовую технику, которой нужны 60Гц. Импульсным блокам питания все равно, пассивным электроприборам и подавно.
Изменение частоты повлияет только на бытовые приборы, имеющие в своем составе электродвигатели, но для них это тоже не критично.
Источник: https://asterisco.ru/blog/68-220v-into-100v.html
Электроприборы из США. Алгоритм решения проблемы 110-220 вольт
Покупка электроники и бытовой техники в Соединенных Штатах очень распространенное на сегодняшний день явление, поскольку цены на мобильные телефоны, планшеты, ноутбуки электробритвы и многое другое там порой гораздо ниже.
Во всяком случае ценники на товары Apple, в частности флагманский смартфон – iPhone может отличаться в разы, особенно если речь идет о б.у. или “refurbished”. Но напряжение в электросети США составляет 110 вольт, против 220-ти, так привычных в России, Украине, Казахстане, да и вообще во всей Европе.
Да и форма вилки питания отличается радикальным образом. Что же делать? Оправдана ли покупка? Будет ли это проблемой?
Давайте разберемся. Для начала основные моменты. Начнем с того, что в описании товаров, продающихся в интернет-магазинах США, в частности на Amazon.com, eBay.com и других площадках, спецификация относительно электропитания указывается крайне редко. Получить дополнительную информацию, задав вопрос не всегда возможно – вам попросту могут не ответить.
Дело в том, что все эти в основном товары рассчитаны на внутренний рынок Соединенных Штатов и вникать в “какое-то там напряжение”, продавцу или службе поддержки интернет-магазина слишком сложно. Да они и не обязаны. И понять их можно. Поэтому на вопрос о целесообразности покупки придется в большинстве случаев отвечать самостоятельно. Но это не так сложно, как кажется. Все проще гораздо.
Достаточно запомнить следующие основные моменты.
На сегодняшний день 100% ноутбуков, ультрабуков, смартфонов, планшетов, фаблетов, триммеров, эпиляторов, электробритв, беспроводных колонок и других электроприборов малой мощности вне зависимости от страны производства работают в диапазоне напряжений 110 – 220 вольт и могут без проблем использоваться по всему миру.
Все без исключения мощные электроприборы, вне зависимости от размера, как то фен, плойка, утюг, посудомоечная машина, телевизор, монитор, тостер, электрочаник, кухонный комбайн, кофеварка, десктоп (настольный компьютер), роботы и просто пылесосы не имеют универсальных блоков питания и в США работают строго с напряжением 100 – 110 вольт.
Правда несложно? Теперь просто ориентируясь на наименование товара вы сможете ответить на вопрос о целесообразности покупки его в США. Теперь немного подробнее.
Универсальные электроприборы, работающие в диапазоне напряжений 110 – 220 вольт
Возьмите любой ноутбук, смартфон или триммер, рассмотрите информацию, которая присутствует на зарядном устройстве или блоке питания. Вы обнаружите там диапазон допустимых напряжений электросети для безопасной работы. Ищите строку “INPUT”. Обычно это 110 – 220 вольт, или же 100 – 240 вольт.
Вот стандартное зарядное устройство смартфона Samsung. В графе допустимого входного напряжения – “INPUT”, указан диапазон от 100 до 240 вольт. Это означает что вы без проблем можете использовать его по всему миру.
Аналогичным образом выглядит зарядное устройство планшета Apple iPad, тот же диапазон напряжений: 100 – 240 вольт.
Или же любая электробритва, будь то Philips, Braun или Panasonic, все те же 100 – 240 вольт.
Можете не утруждать себя поисками данных о рабочих напряжениях беспроводных колонок, ноутбуков, виндеров (устройство для завода механических часов), видео и фотокамер. Всюду вы найдете универсальный рабочий диапазон напряжений.
На второй параметр, а именно частоту тока, указываемую в герцах также внимания можно не обращать, она универсальна по всему миру и составляет 50-60 герц.
Вывод? Не задумываясь вы можете приобретать мелкие электроприборы. Вы сразу сможете включить их в розетку при наличии специального переходника для вилки питания.
Переходник для вилки питания
Все без исключения электроприборы, которые продаются в Соединенных Штатах комплектуются вилкой питания с заземлением (тип B) или без оного (тип A). Первый вариант, вилка с заземлением встречается достаточно редко. Вот как они выглядят.
Вилка питания с заземляющим контактом
Вилка питания без заземляющего контакта
В Европейском Союзе, всех странах бывшего СССР, Китае, Японии, странах Африки привычной является вилка совершенно другой формы (тип C). Разница видна невооруженным, как говорится, глазом.
Вилки стандарта A (США) и C (Европа, Азия)
Решается эта проблема очень просто – путем покупки т.н. “универсального переходника”. И если сетевая вилка купленного электроприбора имеет заземляющий контакт, то необходимо приобрести переходник, который подходит, как для вилок с заземляющим контактом, так и без. Если же заземляющий контакт на вилке отсутствует, то подойдет обычный переходник, без заземления.
Сетевые переходники с американской вилки шнура питания на европейскую. Для вилок без заземляющего контакта (справа) и универсальный (слева).
Переходник просто надевается на вилку и ваш электроприбор готов к работе.
Вариант покупки такого адаптера – универсальное решение. Стоит он обычно $1-2. Как правило они продаются в магазинах электротоваров. В наличии те или иные модели есть практически всегда.
По отзывам многих пользователей без проблем такие переходники можно приобрести на радиорынках. Многие пользователи предпочитают приобретать их через интернет, обычно сразу по пять – десять штук, как правило покупая на китайской площадке Aliexpress.
com, где они всегда продаются в широком ассортименте с бесплатной доставкой.
Но не гонитесь за дешевизной! Крайне низкая цена адаптера обычно означает приблизительно такое же качество.
Крошащийся дурно пахнущий пластик, греющиеся и гнущиеся контакты, выпадающий из розетки полностью или по частям адаптер, плохо фиксирующаяся в адаптере вилка электроприбора – все это не надумано. Это реальные проблемы поджидающие вас, если решите сэкономить и купите откровенный мусор.
Плюс опасность оплавления вилки, порчи электроприбора и даже возникновения пожара никто не отменял. Хороший адаптер прослужит много лет и стоит он 1-2 доллара, но никак не 10 центов.
Есть еще один вариант решения проблемы – замена на “европейский стандарт” вилки питания или всего шнура.
Данная манипуляция не сложна и произвести ее можно в сервисном центре или же если вы дружите с отверткой и головой – просто дома.
Единственное, что хочется отметить: при самостоятельной замене шнура или вилки рискуете испортить электроприбор и даже получить удар током, поэтому приступайте, только в том случае если на 100% уверены в себе.
Если будете менять вилку или шнур, то оптимально использовать оригинальные от другого электроприбора. Идущие “на замену” вилки и шнуры обычно очень низкого качества и с оригинальными не идут ни в какое сравнение.
Вот, например решение проблемы с вилкой питания, для полученного из США ноутбука.
Оригинальный шнур (слева) отправился в мусор и просто был куплен новый шнур идущий от блока питания к розетке (справа). Это решение не самое лучшее, т.к.
отдельно продающиеся шнуры, повторимся, качества, как правило низкого. Оптимально было бы купить качественный адаптер, сохранив оригинальный шнур.
Электроприборы работающие в диапазоне напряжений 100-110 вольт
Теперь рассмотрим другой вариант ситуации: купленный электроприбор рассчитан строго на напряжение 100-110 вольт. Это все крупные стационарные электроприборы, которые редко путешествуют между континентами. Кроме телевизоров со стиральными машинами сюда относятся небольшие, но мощные электроприборы: утюги, фены, плойки, электрочайники, тостеры, пылесосы.
Решить и эту проблему можно, но не так просто и дешево, как с адаптером. Вас выручит покупка специального прибора, т.н.
понижающего трансформатора, который преобразовывает напряжение электросети 220 вольт, автоматически понижая его до необходимых прибору 110 вольт.
После его покупки такого трансформатора никаких адаптеров покупать больше не надо, т.к. все необходимые разъемы уже есть на приборе.
Со стороны пользователя никаких настроек, кроме соединения вилок питания не требуется, просто придется каждый раз подключать имеющийся электроприбор к сети через данный трансформатор. Но момент, который необходимо обязательно учесть при покупке – это мощность вашего электроприбора.
Для мощных электроприборов нужен понижающий трансформатор большей мощности. Вам необходимо определить максимальную мощность вашего электроприбора, которая обычно указывается в Ваттах (ищите “W” или “Watt”) и исходя из этой информации уже покупать понижающий трансформатор.
Габариты понижающих трансформаторов варьируют. Для электроприборов небольшой мощности – до 150-200 Ватт (принтер, ксерокс) он немного больше обычного блока питания, а для большей мощности, например 1000-3000 Ватт (фен, пылесос), его габариты могут достигать размеров двухлитрового пакета с соком.
Вот как выглядит стандартный понижающий трансформатор небольшой мощности. Обратите внимание, что на всех подобных приборах разъем под вилку американского стандарта уже присутствует
А вот понижающий трансформатор большей мощности, рассчитанный на целых два электроприбора.
Торговая марка “Штиль”, Российская Федерация.
Обычно понижающие транформаторы найти в магазинах электротоваров непросто. Легче заказать через интернет, например с бесплатной доставкой, они есть в китайском Aliexpress или гипермаркете Amazon. Стоят от $20, для приборов мощностью до 200 Ватт. Чем мощнее подключаемый прибор, тем дороже трансформатор, например для приборов мощностью до 3000 Ватт он уже будет стоить от $100.
Также, как и в случае с адаптерами сильно экономить тут не стоит. Рискуете получить проблему.
И под конец ответы на несколько распространенных вопросов.
Влияет ли понижающий трансформатор на качество работы? Не испортится ли со временем подключаемый прибор?
Конечно нет, наоборот трансформатор здесь будет играть роль стабилизатора напряжения. Так, что если правильно подобрана мощность и куплен хороший, качественный, трансформатор, то все будет хорошо.
Когда оправдана покупка электроприбора для использования которого необходим понижающий трансформатор?
Обычно это дорогостоящая техника, при покупке которой удалось значительно сэкономить. Или же приборы, которых на отечественном рынке попросту нет. Покупать в США простой пылесос на 110 вольт, платить за его доставку, а затем докупать за $100 понижающий трансформатор смысла нет никакого.
Нашел в США электроприборы рассчитанные на 220 вольт. Можно их покупать?
Да, такие товары и даже целые магазины встречаются. Конечно можете покупать. Обычно эти товары уже укомплектованы “евровилкой”.
Что будет если прибор рассчитанный строго на 110 вольт подключить к сети 220 вольт?
Рискуете его просто испортить. Могут быть и другие последствия. Лучше не пробовать. Работать он точно не будет.
Если мощности понижающего трансформатора недостаточно?
В этом случае также стоит воздержаться от использования. Хорошо если есть встроенный предохранитель, который просто отключит электроприбор при нагревании. А если нет? Проверять не стоит.
Обсудить вопросы связанные с проблемой “110-220” на форуме
Источник: https://www.vxzone.com/help/help-general-info/218-110-220-solution.html